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Abstract—Understanding spatiotemporal anomalies is critical
in domains such as urban safety, mobility, and environmental
monitoring. These scenarios involve complex dynamics that are
effectively modeled using graph-based representations, where
the spatial structure is encoded through data connectivity, and
each node corresponds to a time series. Anomaly detection in
such data is crucial for identifying unusual or significant events,
but it requires complex methods involving pattern recognition,
prediction, and classification. Interpreting these anomalies re-
mains challenging. To address this, we introduce an interactive
system that combines spatiotemporal visualizations with Large
Language Models (LLMs) to generate context-aware explanations
by unifying temporal, spatial, and textual insights. We guide
the LLM using a structured prompting strategy grounded in
the data to reduce hallucinations and improve plausibility. As
a demonstration of functionality, we analyze crime anomalies
in São Paulo, uncovering links to events such as Carnival and
religious holidays.

I. INTRODUCTION

Spatiotemporal (ST) data are increasingly available across
various domains, including urban monitoring, mobility, envi-
ronmental sensing, and video analytics. These datasets support
tasks like forecasting, classification, imputation, and anomaly
detection [1]. Among these, anomaly detection is particularly
valuable for uncovering unusual or critical events. However,
most existing methods are black boxes, flagging outliers
without providing insight into their causes or context [2],
[3]. This limitation is especially problematic in areas like
public safety or environmental analysis, where understanding
anomalies is as important as detecting them. Although some
systems offer trend visualizations, few integrate spatial and
temporal reasoning with natural language explanations to
support human decision-making [4], [5]. The resulting lack of
interpretability undermines user trust and hinders the adoption
of anomaly-detection models in real-world, complex scenarios.

To address this gap, we propose a hybrid framework
that combines graph-based modeling, interactive visualization,
and large language models (LLMs) for explaining anomaly
contexts and generating hypotheses. The approach has three
main components: (i) a graph-based representation that models
ST data as a graph — nodes contain time series — capturing
spatial structure and temporal variation; (ii) an interactive
visual analytics interface in which users explore trends and
anomalies within a coherent spatial and temporal context;
and (iii) Possible explanations from an LLM prompted with
localized ST context produce human-readable hypotheses and

justify them via web search before displaying them. This graph
abstraction mitigates sparsity by encoding neighborhood struc-
ture and relational context beyond simple spatial proximity.

Our setup builds on recent advances in prompting LLMs
with structured data to reduce hallucinations and foster in-
terpretable reasoning [6], [7]. The LLM serves not as the
final decision-maker but as a generative companion that assists
analysts in formulating and validating possible explanations.

Urban environments offer a particularly consequential set-
ting for ST anomaly analysis. Crime data are especially
challenging, extremely sparse, and shaped by complex social
dynamics [8]. In this context, anomalies rarely represent mere
statistical noise; they often signal substantive shifts — such as
sudden surges in historically safe neighborhoods or unexpected
lulls in known crime hotspots — making urban crime an ideal
testbed for assessing the interpretability and real-world utility.
Therefore, we apply our framework to weekly crime reports
from São Paulo, one of the world’s largest and most socially
intricate cities. Two real-world scenarios (Carnival and major
religious holidays) demonstrate how the system detects, con-
textualizes, and provides possible explanations using external
evidence. We also held brief informal interviews with two
external domain experts, who praised the system’s novelty and
usefulness, offering suggestions for improvement.

Our contributions are threefold: (1) a methodology for ana-
lyzing and explaining ST anomalies that integrates interactive
contextualization, hypothesis generation, and validation; (2)
an interactive visualization tool that supports exploration of
ST data; and (3) case-based experiments showing that the
framework yields interpretable, actionable insights for both
experts and non-experts.

The code and other materials are accessible at
https://visualdslab.com/papers/AnomalyExplain/.

II. RELATED WORK

A. Spatiotemporal Anomaly Detection in Urban Contexts

Identifying anomalies requires first defining normal behav-
ior. In urban settings, behaviors considered abnormal in one
location or period may be typical in another [9]. ST patterns in
cities — such as traffic flows or crowd dynamics — are shaped
by both routine and irregular events. This variability demands
context-aware approaches to anomaly detection [9], [10].

Anomaly detection is commonly tackled using machine
learning or statistical methods, often through reconstruction-
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or forecasting-based strategies that identify deviations from
expected patterns. Machine learning models typically achieve
high predictive performance. At the same time, statistical
approaches tend to offer greater interpretability—an essential
feature in urban analytics, where understanding the underlying
reasons behind detected anomalies is crucial [2].

Traditional techniques include matrix and tensor decom-
positions, as well as autoregressive models. Decomposition-
based methods (e.g., PCA, NMF, tensor factorization) capture
normal behavior via low-rank structures, treating deviations
as anomalies [11], [12]. These are generally unsupervised and
algebraic rather than purely statistical in nature.

In contrast, autoregressive models — such as STARMA [13]
and STAR [14] — are grounded in statistical theory and model
local ST dependencies for forecasting. Anomalies are detected
when observed values deviate considerably from predictions.

B. LLMs and Urban Data Graphs

Recent studies have adapted LLMs to urban-data problems,
where ST dependencies and scarce labeled samples present
unique challenges [15], [16]. These models seek to general-
ize across diverse tasks, including traffic forecasting, crime
prediction, and policy planning.

Graph-based methods provide a principled way to anchor
LLMs in the relational urban context, enhancing relevance and
reducing redundancy [17]. A common strategy is to linearize
graph elements (nodes, edges, and paths) into text that an
LLM can ingest. Fatemi et al. [6] show that LLM perfor-
mance is highly sensitive to graph encoding choices, structural
granularity, and task design. Complementing this, Perozzi et
al. [18] introduce a GNN encoder that maps graph information
directly into the LLM token space, enabling tighter alignment.
Such techniques often pair with knowledge-graph retrieval via
indexed subgraph reconstruction [7], [19]. In contrast, our
system eschews global indexing, retrieving local ST context
surrounding a user-selected node.

In the urban domain, UrbanGPT [15] and UrbanLLM [16]
illustrate the promise of ST-aware LLM. UrbanGPT embeds
ST dependencies and uses instruction tuning for zero-shot
prediction, while UrbanLLM decomposes tasks and routes
subtasks to specialized models. Inspired by these, we embed
spatial and temporal features into a structured prompt that
guides the LLM through step-by-step reasoning to generate
context-aware hypotheses.

C. Urban Data Visualization and Interactive Analysis

Interactive visual analytics is key to deciphering complex
ST patterns in urban data. Cities continually generate heteroge-
neous, high-velocity streams, and carefully designed visualiza-
tions help uncover correlations, trends, and anomalies across
space and time. Deng et al. [20] emphasize that exploring
urban causal relationships requires tools capable of handling
noise, temporal variation, and spatial dependence.

Several systems target pattern discovery and decision sup-
port in ST contexts by integrating multi-level visualizations,

Fig. 1. Method pipeline: A) Model ST data using the crime records and urban
road network. B) Use the ST data to calculate and flag anomalies. C) Receive
constant data from A, B, and D to communicate via visualizations. D) Receive
the ST context of the selected anomaly and return the LLM response.

coordinated views, and specialized techniques such as ST-
Heatmaps [21]. A common focus is on human-computer
interaction and interpretability [21], [22]. For example, Crim-
Analyzer [22] pairs NMF-based hotspot detection with linked
views to examine crime dynamics, while JamVis [21] aids
congestion analysis of Waze alerts through clustering and
visual summarization. Going beyond descriptive pattern iden-
tification, Compass [20] embeds causal inference by extending
Granger causality to reveal dynamic relationships in urban
time series, accompanied by tailored visual explanations.

Our work shares the aim of empowering domain experts
through interactive exploration, but further augments these
visual methods with LLM-guided reasoning, thereby fusing
visual and linguistic interpretability within a single framework.

III. METHODOLOGY

Our workflow (Fig. 1) comprises four coupled components:

A. Spatiotemporal Data Modeling

Following Hassan et al. [23], we begin by selecting a study
area in the target city and extracting its road network using
OSMnx [24], resulting in an intersection-centric graph where
nodes represent street intersections and edges represent street
segments. Because our analysis focuses on street segments,
we invert this representation: every original edge becomes a
node, and two nodes are linked when their corresponding street
segments intersect.

The graph is enriched with both temporal and spatial
attributes from two sources: (i) available incident records —
such as crime reports, traffic accidents, or 311 service calls —
and (ii) amenity information available through OSMnx.
Incident data. Geocoded events are aggregated over a regular
temporal interval ∆t (e.g., daily, weekly, or monthly) chosen
to balance resolution and sparsity. Each event is mapped to the
nearest street-segment node, yielding a time series of incident
counts per node. Public holidays and domain-specific events
could be flagged to support richer contextual interpretation.
Amenity data. For each node, we compute the distance to the
nearest facility of key categories (e.g., police stations, transit
hubs, entertainment venues) within 200 m. These distances
form a fixed-length static vector encoding local urban context.

B. Detecting Anomalies with STARMA

While any anomaly detection model could work, we pri-
oritize interpretability and favor statistical approaches. Ac-
cordingly, we chose the Space-Time Autoregressive Moving-
Average (STARMA) model, which extends ARMA/ARIMA to



Fig. 2. The Visualization Tool: A) Scatter plot illustrating the correlation between crime counts and anomalies per node. B) Map layout of nodes; clicking
selects a node and highlights its neighborhood. Node colors reflect crime count distribution (B.1). C) Explanation results from LLM. D) Time series of the
selected node; hovering over detected anomalies shows a tooltip with local ST context (D.1). E) Subgraph representing the selected node neighborhood.

capture both temporal and spatial dependencies in multivariate
time series [13]. For N spatial locations observed at discrete
time points, the STARMA(p, q, r, s) formulation is

Yt =

p∑
i=1

r∑
j=0

ϕijW
(j)Yt−i︸ ︷︷ ︸

Autoregression (AR)

+

q∑
i=1

s∑
j=0

θijW
(j)εt−i︸ ︷︷ ︸

Moving Average (MA)

+εt

(1)
Where Yt ∈ RN is the vector of observations at time t; p

and q denote the temporal AR and MA orders, respectively;
r and s specify the spatial AR and MA orders — that is,
how many neighborhood “rings” are considered at each lag;
W(j) ∈ RN×N is the j-th-order spatial weight matrix (here,
derived from the graph adjacency); ϕij and θij are the AR
and MA coefficient matrices for temporal lag i and spatial lag
j; and εt ∼ N (0, σ2I) represents white-noise innovations.
In this process, the current observation Yt depends on past
values (AR term) and past disturbances (MA term), not only
from the same location but also from neighboring areas.

Model fitting. Coefficients {ϕij ,θij} are estimated by
maximum likelihood. At the same time, the hyperparameters
(p, q, r, s) are selected via a grid search guided by the Akaike
and Bayesian Information Criteria.

Anomaly detection. After fitting, the model yields one-step-
ahead forecasts Ŷt. We flag an observation as anomalous
when any component of the residual rt = Yt − Ŷt exceeds
±3 standard deviations of the in-sample residual distribution.
Since STARMA embeds both spatial contiguity and temporal
dynamics, this residual-based rule highlights localized devia-
tions that purely temporal or purely spatial models might miss.

C. Visualization Tool
To support exploration, our system provides an interactive

interface of five coordinated, task-specific views.
Correlation View. This scatterplot maps each street-segment
node to a point whose coordinates encode the total recorded
incidents (e.g., crimes, traffic accidents) and the corresponding
anomaly count (Fig. 2-A). The view enables the rapid detec-
tion of outliers and clusters, serving as a gateway to deeper
exploration. Users can click points or brush across multiple
ones to drive the Spatial View. To minimize visual clutter, we
display only nodes that have at least one recorded incident and
utilize pan-and-zoom controls to facilitate navigation. Point
outlines convey selection state — orange by default, blue for
the active node, and light blue for its immediate neighbors.
Spatial View. This map-based pane depicts the study area’s
spatial domain (Fig. 2-B). Each street-segment node appears
as a selectable object, and the view reflects any selections
made in the Correlation or Temporal Views — whether via
brushing or time-range filtering — thus analysts can focus
on either the entire network or a chosen subset. Node fill
color represents the total incident count, with progressively
darker hues indicating higher values. Counts are divided into
four equal-width quartile bands, shown in the legend (Fig. 2-
B.1). Opacity encodes anomaly status: nodes without detected
anomalies or outside of filters are desaturated and unselected.
Clicking a node highlights it in blue, while its first-order
neighbors in a lighter-blue. All selections are propagated
back to the Correlation View, ensuring a consistent coloring
across the interface. Fig. 2 shows this selection across views —
selected node with a, and its neighbors with b and c.
Explanation View. This panel presents LLM-generated expla-
nations, formatted for clarity and linked to the visual interface



Fig. 3. Prompt structure: To the left of each prompt component is a general
description, and to the right is an example without specific details.

(Fig. 2-C). Hovering over a node ID in the text highlights the
corresponding elements across all views, connecting narrative
and visualization. A drop-down menu allows analysts to switch
between GPT-4o Mini and Gemini 2.0 Flash, which share a
common prompt template (see Sec. III-D).

Temporal View. When a node is selected, its incident-count
time series is plotted (Fig. 2-D); otherwise, the network-
wide aggregate series is shown. Moving the cursor reveals
the exact date and public holidays. Neighboring nodes’ series
appear as faint background traces to provide local context.
Hovering over an anomaly marker (red dots) displays a tooltip
with incident counts for the selected node and its neighbors
in the previous, current, and subsequent intervals (Fig. 2-
D.1). Two interactions are available: (i) clicking an anomaly
marker requests an LLM explanation, retrieving the associated
subgraph and a temporal window of −4 to +2 intervals; (ii)
holding Alt while clicking activates a time-range selection
that synchronizes the Correlation View and Spatial View.

Neighbourhood View. This panel organizes the spatial con-
text of the selected node into four regions (Fig. 2-E): (1) the
selected node; (2) amenities within a fixed radius of that node;
(3) first-order neighboring nodes; and (4) amenities that are
close to at least one neighbor but not to the selected node. This
view complements the Spatial and Temporal View by showing
connectivity and proximity as spatial evidence for or against
LLM-generated hypotheses. Hovering over an amenity reveals
its distance and linkage (see cursor in Fig. 2-E). It provides a
clear and interactive representation of the spatial context.

Fig. 4. Carnival periods: Weeks from 04-07-2022 to 05-05-2022 (A) and 02-
07-2023 to 03-03-2023 (B) cover the full duration of Carnival for each year.
A.1 and B.1 show the corresponding maps with their respective legends. B.2
indicates the part with the most crimes.

D. Prompting for Anomaly Explanation

Explanations are generated through a structured prompt
(Fig. 3) that anchors the LLM in the local ST context. The
prompt consists of (1) a concise problem statement; (2) a
step-by-step task description; (3) the textualised ST context
of the selected anomaly; (4) descriptions of nearby amenities
(additional spatial context); (5) a list of holidays or notable
events (additional temporal context); and (6) the required XML
output schema (Appendix A). A preceding message defines
the model’s role and global constraints—such as language,
tone, and persona. The task has three steps: (1) generate
hypotheses from the provided information, (2) search the web
for supporting public events and cite sources, and (3) select
the best hypothesis and return it in the requested format. This
structure reflects practices that enhance LLM controllability,
reduce ambiguity, and improve multi-step reasoning [25], [26].
Outputs are constrained to machine-readable XML format,
following best-practice guidelines [27]. Overall, this prompt
design functions as a risk-reduction strategy that promotes
evidence-grounded hypothetical explanations.

We evaluated two web-augmented LLM configurations:
GPT-4o Mini with built-in web search, and Gemini 2.0 Flash
with the Google Search tool. GPT-4o Mini consistently pro-
duced concise, well-cited hypotheses, while Gemini returned
richer references but with less consistency.

IV. USAGE SCENARIOS

To demonstrate our workflow, we analyze official incident
data from a compact downtown district of São Paulo, mirroring
the spatial extent used by Hassan et al. [23]. The setting is
challenging due to high incident counts at some street segment
levels and high social sensitivity. We use official cell phone
theft records from the State of São Paulo, and aggregated them
weekly to balance temporal detail against sparsity. We present
two representative scenarios below.

A. Carnival of 2023

Across Brazil, Carnival brings a surge in street activity —
characterized by tourists, parades, increased alcohol consump-
tion, and crowding — that often correlates with a rise in



Fig. 5. Detail of more “dangerous” street segment. A) Local context of the
higher peak during the Carnival. B) Correlation View highlighting the selected
node and its neighbors, similar to Spatial View (C). D) Neighborhood View
showing details of local space context.

crime. In 2022, a small resurgence of the pandemic delayed
celebrations to 16–30 April, while in 2023, they occurred
normally from 11–19 February. Fig. 4 (Temporal View A
and B) marks the weeks surrounding both events. We focus
on node 553, near Praça da República, which recorded the
highest counts in both years (see the spatial context in Fig. 4-
B.2). Its time series shows several anomalies, with a sharp
peak during Carnival 2023 (Temporal View in Fig. 5). Node
553 also stands out in the Correlation View, while neighbors
remain near the origin (Fig. 5-B). The Neighborhood View
highlights a few direct connections but many nearby crime-
linked amenities — such as metro stations, bars, and pubs —
known to be associated with crime.
Peak weeks analysis. The peak of incidents spans two consec-
utive weeks: the week of Carnival and one preceding it. The
first peak is predictably high, and the LLM correlates it well,
citing risk-prone amenities and contextual evidence, such as:

• “The Pagu Block paraded on Tuesday (21) during Car-
nival at Praça da República in São Paulo.”

• “Crowds with distracted people during their leisure time
are a magnet for opportunistic actions. . . thefts and
robberies increase during Carnival.”

The week-before-carnival’s anomaly, however, may seem
unexpected — especially for non-local users. Here, the LLM’s
response proves especially useful, as it uncovers real-world
context not directly present in the data. For example, the model
found that pre-Carnival events contribute to the early spike:
“The Ilú Obá de Min block opens the São Paulo carnival today
(17) with a street opera. The parade will take place at night
in the center of the capital’s streets.”
Take-away. In cities like São Paulo, Carnival celebrations
often begin before the official dates. This type of contextual
knowledge may seem trivial to locals, but it is not for all users.

B. Religious Holidays

In our initial exploration, most detected anomalies were
positive, i.e., sudden increases in incident counts — expected,
as low-incident streets make any spike noticeable. However,
a pronounced decrease can be equally anomalous, especially
for locations with a historically high baseline.

Fig. 6. Anomalies due to catholic holidays. A) Context of dip anomaly;
and B) Light anomalous peak. Main catholic holidays: (h1) Holy Week, (h2)
Corpus Christi, (h3) Our Lady of Aparecida, and (h4) Christmas.

To examine this case, we focus on the upper-right quadrant
of the Correlation View and select node 547 (Rua Conselheiro
Crispiniano; highlighted in Fig. 2). Its time series contains
several anomalies, including a marked dip (Fig. 6). The decline
coincides with the holiday of Our Lady of Aparecida. Because
a Catholic church is situated nearby, it is plausible that
religious observance reduced routine street activity and, thus,
opportunities for crime. However, does every major Catholic
holiday produce a similar effect?
Comparative holiday analysis. Fig. 6 also marks three
other Catholic holidays (labels h1–h4). To minimize tourism-
related confounds (prominent in h1 and h4), we compare h3
in 2022 with h2 in 2023:

• h3—Our Lady of Aparecida 2022 (Fig. 6-A): the node
recorded zero incidents during the holiday week.

• h2—Corpus Christi 2023 (Fig. 6-B): incidents spiked
during the holiday week and remained elevated thereafter.

Node 547 is situated in a high-traffic corridor lined with
amenities, making it inherently vulnerable to crime. Never-
theless, the LLM generated distinct but meaningful responses:
h3: “Likely due to religious observances associated with the
Feast of Our Lady of Aparecida, leading to increased commu-
nity presence and vigilance.” Consistent with “Our Lady of
Aparecida coincides with Children’s Day in Brazil, leading to
gatherings and a reflective, family-oriented atmosphere.”
h2: “Heightened social activities and gatherings during Cor-
pus Christi created opportunities for crime, both on the node
itself and in nearby Praça Ramos de Azevedo.” Supported by
“Guide to events and activities in São Paulo over the Corpus
Christi long weekend.”
Take-away. Religious holidays do not uniformly suppress
crime — even near churches. Whether incident counts rise or
fall depends on the nature of the celebration: contempla-
tive observances may dampen street activity, whereas festive,
tourism-oriented events can generate the opposite effect.

V. DISCUSSION, LIMITATIONS, AND FUTURE WORK

We introduced an interactive system that explains spatiotem-
poral anomalies in urban data through LLM-generated narra-
tives. Structured prompts—augmented with local spatial and
temporal context—anchor the model’s output in the underlying
data. Our case studies demonstrated that the resulting LLM’s
responses can surface plausible, data-supported hypotheses
linking anomalies to social dynamics such as holidays, mass
events, and amenity density. By coupling visual cues with



natural language insights, the system helps both specialists
and lay users interpret complex patterns more easily.
Collaborators feedback. Two criminology experts in São
Paulo praised the system’s novelty and its LLM-based con-
textualization, which streamlines analysis and speeds insight
generation. They suggested expanding data sources beyond
news and public events to capture additional factors and
upgrading the anomaly detector. Overall, they believe the
tool can cut analysis time during pattern exploration and be
deployed in security offices after targeted refinements.
Limitations. An evident limitation is the output variability.
Despite our prompt engineering, LLM responses can still vary
in detail or drift into hallucinations. External search tools (e.g.,
Google) did not consistently improve relevance, often yielding
trivial, off-topic citations or omitting known solutions due to
a lack of web references. Another limitation is the lack of
general user evaluation. While the interface was designed
with standard usability heuristics, we have not conducted
formal studies to assess its impact on comprehension, trust, or
decision-making. Another limitation is response correctness,
as real explanations are not available for every anomaly point.
Future work. We plan to extend our framework to include
forecast explanations, enabling the system to elucidate pre-
dicted trends (and their uncertainties) — supporting a more
complete spatiotemporal analysis pipeline. Once this func-
tionality is integrated, we will perform a comprehensive user
study with domain experts and novices to assess interpretabil-
ity gains, reliability, practical usefulness, result correctness,
and potential design improvements. We also aim for domain
generalization. Beyond crime data, the approach can also
be applied to traffic, pollution, epidemiology, or even neural
activity networks, underscoring its versatility.

VI. CONCLUSION

We present a system that combines coordinated visual-
izations with LLM-generated narratives to try to explain
spatiotemporal anomalies. A structured prompting strategy
constrains output, ensuring concise contextualizations. Applied
to weekly incident data in São Paulo, the method produced in-
terpretations aligned with known events, showing its potential
to enrich data exploration and understanding.
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APPENDIX

A. Requested XML Structure for LLM Responses

Fig. 7. XML output structure.

B. Implementation and Execution Details

The entire processing pipeline was developed in Python 3.9
using open-source packages such as NumPy, Pandas, GeoPan-
das, and Scikit-learn. Anomaly detection was executed in
a Google Colab environment without GPU support. The
visualization system follows a client-server paradigm. The
server handles data filtering and selection, communicates with
OpenAI and Gemini APIs, and parses and processes their
responses. The local server was implemented with Python’s
Flask package, with all APIs using the GET method and writ-
ten from scratch. For the client (visualization system), we used
JavaScript with the Svelte framework. All visualizations were
created using the D3.js library. The raw data was dowloaded
from https://www.ssp.sp.gov.br/estatistica/consultas, the offi-
cial site of São Paulo State Public Security portal.
Execution Time: he anomaly detection procedure takes ∼
4.5 s per run (∼ 4.0 s for STARMA fitting and ∼ 0.5 s
for residual computation and thresholding). LLM-based ex-
planations require ∼ 14 s per query, depending on service
latency and context length. STARMA hyperparameter tuning
takes ∼ 1 h, but it is an offline, one-time step.

C. Spatiotemporal Context in the Prompt: Carnival of 2023

Fig. 8. Spatiotemporal context for the 2023 Carnival and Pre-Carnival
celebrations.

https://www.ssp.sp.gov.br/estatistica/consultas


D. Spatiotemporal Context in the Prompt: Religious Holidays

Fig. 9. Spatiotemporal context for the 2022 Our Lady of Aparecida celebra-
tion scenario. Extra Spatial Context omitted since it matches Fig. 8.

Fig. 10. Spatiotemporal context of the 2023 Corpus Christi celebration
scenario. Node details and Extra Spatial Context are omitted since they match
Fig. 9 and Fig. 8.

E. LLM Response: Carnival of 2023

Fig. 11. Parsed LLM Response. Anomaly during Pre-carnival week. Using
Google Gemini Flash 2.0.

F. LLM Response: Religious Holidays

Fig. 12. Parsed LLM Response. Anomaly during Our Lady of Aparecida
holiday week. Using OpenAI’s GPT-4o mini.



Fig. 13. Parsed LLM Response. Anomaly during Corpus Christi holiday
week. Using OpenAI’s GPT-4o mini.

G. Links Referenced in LLM Responses

Regarding Carnival:
REF 001 Sao Paulo, Sao Paulo, Brasil. 21st Feb, 2023. (INT)

Street Carnival in Sao Paulo - Alamy.
REF 002 RISKS DURING THE CARNIVAL | MOVI NEWS.
Regarding Pre-Carnival:
REF 001 Ilu Obá de Min abre carnaval paulistano com ópera

de rua - Agência Brasil - EBC.
REF 002 Sao Paulo, Sao Paulo, Brasil. 21st Feb, 2023.
Regarding Our Lady Aparecida’s holiday:
REF 001 Feast of Our Lady Aparecida in São Paulo
REF 002 São Paulo 2022 Criminal Statistics
Regarding Corpus Christi’s holiday:
REF 001 Gazeta de São Paulo - 6 programas para curtir São

Paulo durante o feriado de Corpus Christi
REF 002 Guide of the Week - What to do in São Paulo during

the Corpus Christi holiday 2023

https://www.alamy.com/sao-paulo-sao-paulo-brasil-21st-feb-2023-int-street-carnival-in-sao-paulo-february-21-2023-sao-paulo-brazil-the-carnival-party-continues-in-sao-paulo-on-tuesday-21-hosting-the-famous-recife-block-galo-da-madrugada-which-is-expected-to-draw-a-crowd-of-around-500000-people-around-the-ibirapuera-park-credit-leco-vianathenews2-foto-leco-vianathenews2zumapress-credit-image-leco-vianathenews2-via-zuma-press-wire-editorial-usage-only!-not-for-commercial-usage!-image526954769.html
https://movi-news.com/security/risks-during-the-carnival/07/02/2023/
https://agenciabrasil.ebc.com.br/geral/noticia/2023-02/ilu-oba-de-min-abre-carnaval-paulistano-com-opera-de-rua
https://www.alamy.com/sao-paulo-sao-paulo-brasil-21st-feb-2023-int-pagu-block-during-street-carnival-in-sao-paulo-february-21-2023-sao-paulo-brazil-the-pagu-block-which-has-only-women-as-part-of-the-drums-paraded-on-tuesday-21-during-carnival-at-praca-da-republica-in-sao-paulo-image527179420.html
https://www.worldstockmarket.net/tips-for-visiting-the-national-sanctuary-of-our-lady-of-aparecida-in-sp/
https://movi-news.com/security/sao-paulo-2022-criminal-statistics/05/04/2023/
https://www.gazetasp.com.br/gazeta-mais/dicas-da-gazeta/seis-programas-para-curtir-sao-paulo-durante-feriado-de-corpus-christi/1137704/
https://www.guiadasemana.com.br/na-cidade/galeria/o-que-fazer-sao-paulo-feriado-corpus-christi-2023
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