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scenarios
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Abstract—Analyzing the impact of socioeconomic and urban variables on crime is a complex data analysis problem. Exploring
synthetic, correlation-based scenarios using changes in a set of variables could alter a region’s definition from unsafe to safe (known
counterfactual explanation), which can aid decision-makers in interpreting crime in that region and define public policies to mitigate
criminal activity. We propose CounterCrime, a visual analytics tool for crime analysis that uses counterfactual explanations to add
insights for this problem. This tool employs various interactive visual metaphors to explore the counterfactual explorations generated in
each region. To facilitate exploration, we organize our analysis at three levels: the whole city, the region group, and the regional level.
This work proposes a new perspective in crime analysis by creating “what-if” scenarios and allowing decision-makers to anticipate
changes that would make a region safer. The tool guides the user in selecting variables with the most significant effect in all city
regions. Using a greedy strategy, the system recommends the best variables that may influence crime in unsafe regions as the user
explores. Our tool allows for identifying the most appropriate counterfactual explorations at the regional level by grouping them by
similarity and determining their feasibility by comparing them with existing examples in other regions. Using crime data from São Paulo,
Brazil, we validated our results with case studies. These case studies reveal interesting findings; for example, scenarios that influence
crime in a particular unsafe region (or set of regions) might not influence crime in other unsafe regions.

Index Terms—Counterfactual Explanations, Crime Analysis, Visual Analytics Tools, Machine Learning
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1 INTRODUCTION

Several studies have shown that variables such as popula-
tion density [1], [2], [3], unemployment rate [4], [5], socioe-
conomic indicators [6], [7], [8], and even the concentration
of bars and bus stops [9], [10], [11], [12] directly affect the
crime dynamics in specific locations of a city. Most of these
studies focus on analyzing the impact of a few variables on
the increase or decrease of crime rates [6], [7], [8] or on how
a given variable is associated with the emergence of crime
hotspots [13], [14], [15], [16], [17]. However, accounting for
only a few variables is insufficient to capture the full com-
plexity of the crime dynamics. Therefore, analytical tools
capable of handling multiple data attributes are essential in
this context.

Machine learning models are tools designed to capture
patterns and dependencies among variables present in data.
This is accomplished during the learning process, where a
model is trained on a dataset and adjusts its parameters to
minimize the discrepancy between its predictions and the
actual observed outcomes. As a result, the trained model
serves as a proxy for the underlying data distribution,
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enabling researchers to investigate and interpret the learned
relationships. For example, such models can be used to ex-
plore the connections between urban physical environments
and socio-economic variables [18] or to compare algorithmic
predictions with human decisions in domains like criminal
justice [19]. This capacity to represent and query complex
data structures is fundamental for generating deeper in-
sights into multifaceted phenomena.

To uncover the relationships captured by machine learn-
ing models, Explainable AI (XAI) methods aim to make
the predictions of “black-box” systems understandable to
humans. A variety of XAI techniques have been devel-
oped, including popular feature-attribution methods such
as LIME [20] and SHAP [21], which provide valuable in-
sights into machine learning models, providing explana-
tions as weights of regression models [22] for imprisonment
sentences in assault cases, and using SHAP values [23] for
crime prediction. To give more insights into crime anal-
ysis, counterfactual explanations [24], instead of identify-
ing influential features as SHAP and LIME, reveal specific
changes within the urban and socioeconomic feature space
that would result in a shift in the model’s classification [25],
[26]. Fig. 2 A illustrates this idea by showing the decision
boundary of a classifier, where instances (regions of a city)
on the red side are classified as unsafe and those on the blue
side as safe. Counterfactual explanations (CFs) correspond
to perturbations in the instances’ attributes to move them
across the border. The purple points in Fig. 2 A are four
CFs generated from a given sample (orange point). Fig. 2
B shows the original and perturbed values of the instance’s
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Fig. 1. The proposed counterfactual explanation crime analysis tool, called CounterCrime, is composed of two main parts: Global analysis involving
a map (A1 , and B1 ) showing the impact of clustering (in colors) and in white, the effect of filtering (A2 , and B2 ). Local analysis clusters similar CFs
for a single region in C and evaluate their costs in D ; CFs are inspected in E and F .

attributes. Note that the same variables can be perturbed
differently, resulting in distinct CFs, such as CF3 and CF4,
which correspond to distinct perturbations in BusStops
and HighIncomeHolder. In other words, counterfactual
explanations identify critical variables and generate diverse
hypothetical scenarios that enhance decision-makers’ un-
derstanding of the factors that could jointly influence crimi-
nality.

The example above illustrates the usefulness of counter-
factuals as an analytical mechanism. Despite their potential,
crime analysis methods based on machine learning [27], [28]
have not yet fully explored crime factors (CFs) to investi-
gate critical variables and their relationships with crimes in
specific locations within a city. However, it is important to
clarify that CFs alone do not establish causality [29], and
they should be primarily used as supplementary resources
to support experts in decision-making. Our research team
has been working on crime analysis for several years, de-
veloping visual analytic tools to explore various aspects
of crime hotspots [13] and identify crime patterns over a
city [30]. Our research examines the relationship between
urban and socioeconomic variables and crime, utilizing a
predictive model as a proxy for the real-world mechanisms
underlying criminal behavior. Counterfactual explanations
are employed to emulate diverse scenarios, enabling experts
to explore how specific changes to urban features could
hypothetically reduce crime rates in particular city locations.
By building on a predictive model (Logistic Regression),
we can uncover complex correlations between variables and
crime, offering a tool for deeper analysis — while explicitly
acknowledging that this does not imply a causal relation-
ship.

The counterfactual-based methodology, depicted in
Fig. 1, is supported by a visual analytics tool named
CounterCrime. This tool facilitates interactive exploration of
counterfactual scenarios in crime, as each region can have a
set of possible CFs; the proposed tool highlights the vari-
ables or groups of variables that may contribute to reducing
crime rates. CounterCrime provides recommendations to
guide users in selecting and exploring variables. It reveals
spatial patterns associated with cluster regions affected by
the same set of variables. The system automatically clusters

Fig. 2. Illustrative representation of a decision boundary and counterfac-
tual explanations (purple) of a given instance (orange).

regions with similar behavior, reducing the analytical bur-
den. CounterCrime enables interactive resources, allowing
users to select the most appropriate counterfactual explana-
tions.

This work’s main contributions are (1) the usage of
counterfactual explanations to simulate scenarios and un-
derstand which variables may influence crimes in unsafe
regions; (2) an exploratory framework that guides users in
identifying critical variables linked to unsafe regions; (3) a
methodology to explore counterfactual explanations in spe-
cific regions, grouping CFs by similarity and determining
their feasibility based on comparisons with safe regions; (4)
a visualization-assisted analytical tool called CounterCrime
that integrates CFs and interactive resources to explore
simulated scenarios and understand what may influence
crime in unsafe regions; (5) two case studies investigating
crime-related phenomena in São Paulo (the largest city in
South America) were validated by criminology experts with
positive feedback.

2 RELATED WORK

The proposed methodology relates to three main subjects: (i)
counterfactual explanations and explainable machine learn-
ing, (ii) visualization tools to explainable machine learning
and counterfactual explanations, and (iii) crime data analy-
sis.

2.1 Counterfactual explanations and explainable ma-
chine learning

The literature on counterfactual explanations is vast and
includes various applications and methodologies. The use

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3586202

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

of counterfactual explanations to identify patterns in spe-
cific machine learning models is commonly referred to as
actionable knowledge. Examples of actionable knowledge
methods include heuristics [31], [32], [33], kNN [34], and
A*-like methods [35], [36] to extract a single counterfactual
explanation in tree-based classifiers. Additionally, linear-
integer optimization methods have been proposed to find
single [37], [38] and multiple [39] counterfactual expla-
nations. Furthermore, actionable knowledge has been uti-
lized to answer why-not questions, seeking to understand
why particular systems fail to produce adequate query
results [40], [41], [42].

Counterfactual explanations are a critical element of
explainable artificial intelligence (XAI) methods for both
model explanation [43] and recourse actions [39]. The flexi-
bility of CFs allows them to be employed with various types
of models [43], [44], [45]. They have proven effective in
linear-integer formulations [39], convex optimization [46],
[45], and iterative procedures to compute multiple CFs for
model explanation [47].

2.2 Visualization tools for explainable machine learn-
ing and counterfactual explanations
Visualization is a practical tool for understanding machine
learning models [48], [49], as it provides insightful interpre-
tations of various models, including convolutional neural
networks [50] and tree-based models [51], [52]. Additionally,
specific tools have been developed to assist in analyzing
activation patterns in neural networks [53], [54] and to
facilitate comprehension of the learning process of ranking
mechanisms [55]. Model-agnostic methods that employ
simplification have also been proposed to interpret machine
learning models. For example, surrogate models [20] en-
ables the visual inspection of decision boundaries [56], [57].
Some approaches rely on partial dependence plots [58], [59]
or Shapley values [21] to explore the significance of features.
Furthermore, methods aim to extract and visualize rules
from models to understand predictions [60]. Visualization
methods for comparing multiple models’ predictions can
also identify discrepancies [61] and anomalies among mod-
els [62].

Counterfactual explanations can also be combined with
visualization techniques to interpret machine learning mod-
els. These methods aim to answer the question of which
features or groups of features should be adjusted to change a
prediction outcome. Some methods use greedy schemes to
change binary or sparse features, such as those used in
text classification, to generate counterfactuals [63]. However,
most counterfactual-based visualization methods focus on
tweaking a single feature [58], finding the closest sample
with a different outcome [59], or modifying features to
improve a prediction [64]. More closely related approaches
also enable the visualization of counterfactual explanations
resulting from multiple attribute changes. These include
interactive systems like ViCE that facilitate user exploration
of multi-attribute adjustments [28], SDA-Vis which uses
constrains adjustments to generate counterfactuals across
multiple features [65], and methods like DECE designed
for investigating specific hypotheses by constraining feature
modifications within user-defined intervals [27], More re-
cently, manual, counterfactual modifications were applied to

graph neural networks to understand better patient-specific
networks, as well as relevance values for genes and interac-
tions [66]; and manual interventions in the projected space
of time-series were also performed to achieve counterfactual
explanations [67].

2.3 Crime data analysis

Machine learning techniques are increasingly used for crime
analysis [68], [69]. These techniques are used to identify
high crime rate regions [13] and to understand their re-
lationship with various urban factors [16], [30]. Machine
learning methodologies have also been developed for crime
forecasting [17]. To conduct these analyses, most techniques
rely on identifying crime hotspots [70] and the study of the
relationship between crimes and external variables such as
socioeconomic and infrastructure factors. According to en-
vironmental criminology, the concentration and persistence
of crimes in certain locations are not random but, instead,
result from the characteristics of those locations [71], [72].
Studies have shown that crime is closely related to popula-
tion density [1], [2], [3], socioeconomic factors [6], [7], [8], [6],
[73], unemployment rate [4], [5], and even the concentration
of bars and bus stops [9], [10], [11], [12]. By utilizing machine
learning techniques to analyze these factors, it becomes
possible to identify patterns and trends that can help predict
and prevent crime in high-risk areas.

Crime analysis visualization methods enable the inves-
tigation of crime incidence at detailed street-level gran-
ularity [74], [15], [75] or coarser scales such as census
regions [13]. By illuminating crime dynamics over time,
these methods enhance the understanding of crime patterns
and trends [72], [30]. Analytical capabilities of visualization-
assisted analysis methods range from simple color map
tools [76], [77], [78], [79], [80], [81], [82], [83] to more ad-
vanced solutions that facilitate linked views and interactive
exploratory resources [84], [85], [86], [87], [88], [13], [89], [30],
[52].

Our methodology differs from previous work by using
a predictive model as a proxy for crime mechanisms to
emulate actionable scenarios through counterfactual expla-
nations. Rather than identifying static factors that define
unsafe regions, our approach explores specific, hypothetical
changes in those factors that could transform a high-crime
area into a safer one. The goal is not to prescribe solutions
but to enhance understanding of the complex dynamics
that influence criminality. Moreover, our method identifies
clusters of regions that share similar counterfactual expla-
nations, allowing for the analysis of variables that impact
entire groups. This feature supports a richer analytical
framework by enabling investigations at both the individual
and cluster levels. Consequently, our approach offers a
distinct and complementary perspective to techniques such
as LIME [20] and SHAP [21]. While those methods primarily
rank feature importance, our focus on feature-level change
scenarios shifts the analytical question from Which features
matter most? to What kind of change in which features could lead
to a different outcome?
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Fig. 3. A case study investigating the impact of allowing counterfactual explanations that reduce the number of BusStops in criminality. A1 indicates
the proportion of regions safer with that filtering for each value. B1 , C1 , and D1 show the regions are already safe in white and the crime hotspots
in red. B2 , C2 , and D2 show the most important variables for finding counterfactual explanations for the remaining regions.

3 MOTIVATING CASE STUDY

Numerous methods exist to analyze data and determine
the factors contributing to high crime rates in a given
region [90], [76], [77], [91], [78], [79], [80], [81], [82], [83].
While one popular approach involves identifying critical
variables by grouping hotspots with similar behavior, a
more complex and under-explored issue is understanding
how modifying these variables influences crime in unsafe
regions. To address this challenge, consider a scenario using
urban and socioeconomic variables to train a model that
classifies areas as safe or unsafe. With this model, we can
examine how certain variables must change to transform
regions classified as dangerous into regions classified as
secure. This is precisely where counterfactual explanations
become relevant.

Take a look at the scenario presented in Fig. 3. The line
chart in A1 illustrates the proportion of regions (y-axis) that
will be classified as safe if the number of bus stops de-
creases (x-axis) relative to the regions initially categorized as
dangerous. This curve is computed based on counterfactual
explanations. The red regions in B1 correspond to originally
unsafe areas. By reducing the number of BusStops to at
most 250 and 50 in C1 and D1 , respectively, 54% and 88%
of the regions become classified as safe (white polygons
on the map indicate the regions that become safe). It is
worth noting that the sign “>=” above the maps denotes
“at most,” implying that for some regions, a slight decrease
in bus stops could classify them as safe. In contrast, others
may require a more drastic reduction.

Fig. 3 B2 , C2 , and D2 present a ranking of variables
based on their impact on changing the classification to safe.
The results show that BusStops consistently has the most
significant impact on changing the classification of regions
from unsafe to safe. The ranking of variables can be derived
from counterfactuals, as explained in the following sections.
Additionally, the order can change when adjusting the CF
threshold, as shown in Fig. 3 D2 , where Bars becomes
the second most important variable after considering CFs
greater than 50 for BusStops. Therefore, if reducing the
number of BusStops beyond 50 is not feasible, the next
option would be to decrease the number of Bars. It is worth

noting that these emulated scenarios allow for observing
the actual numerical impact of variables on the model’s
classification. Any real-world changes should be made in
collaboration with experts to validate their effect on crime
and consider other factors, such as transit.

This case study highlights the value of counterfactual
explanations as an analytical resource. In this context,
CFs provide insights into the relationships the model has
learned between specific variables and crime, as well as
how changes to these variables can help understand what,
according to the model, may influence crime in unsafe
regions.

4 DESIGN REQUIREMENTS

Our research team has valuable experience working with
crime analytics professionals, which has helped us under-
stand the main difficulties faced in this field. We conducted
a comprehensive survey of the literature on crime analysis
and explainable machine learning to properly design our
visual analytics system. Our findings revealed that many
authors emphasized linking urban and socioeconomic vari-
ables with crime [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. Furthermore, we identified the need to analyze
crimes at three different levels of detail: local (specific lo-
cations) [92], [13], group (clusters of regions with similar
characteristics) [93], and global (the entire city) [16]. In-
terestingly, many authors also stressed the importance of
providing model explanations at these same three levels
of detail [27], [94], [59], [95], [52]. Therefore, our visual
analytic system, CounterCrime, was designed to address our
analytical needs and meet the demands of several other
authors. Considering the diverse challenges faced in crime
analytics, we believe that CounterCrime will be a valuable
tool for professionals in this field.

Given that regions can be classified as safe or unsafe
based on a classification model and that there are multiple
and diverse counterfactual explanations for each region (for
further information on how these are computed, please refer
to the following section), we aim to develop an analytical
tool that can explore and analyze the counterfactuals asso-
ciated with either a single region or a cluster of regions that
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share similar counterfactuals. The primary objective of this
tool is to identify the variables that have the most signifi-
cant impact on classifying regions as unsafe. Furthermore,
the tool must enable users to modify these variables and
observe the resulting changes in the classification of regions,
transitioning from unsafe to safe. We have established a set
of primary requirements that the tool must meet to achieve
these objectives.
R1. Analysis of Multiple Counterfactual explanations:
Each region has many associated counterfactual explana-
tions, making it essential to have enabling resources for
visualizing and analyzing sets of counterfactuals linked to
unsafe regions.
R2. Identification and Modification of Relevant Variables:
The system must provide mechanisms to identify the vari-
ables that most frequently appear in effective counterfactual
scenarios and allow users to modify their values. For exam-
ple, it should be able to answer questions such as: Which
regions experience a change in crime classification to “safe”
when specific variables are modified? How many regions
undergo such a classification change when the values of
certain variables are altered?
R3. Clustering Regions with Similar Counterfactual expla-
nations: Analyzing counterfactual explanations for each re-
gion can be challenging, especially in large cities. Therefore,
it is highly desirable to cluster regions with similar coun-
terfactual explanations to explore them together, revealing
”global” patterns. Additionally, the system must evaluate
whether certain counterfactuals are realistic.
R4. Seamless Data Science Workflow Integration The an-
alytical framework should integrate seamlessly with stan-
dard data science workflows, offering a user-friendly envi-
ronment that supports intuitive exploration and experimen-
tation.

Based on the requirements outlined above, we have
identified a set of tasks that the analytical tool needs to be
able to perform:
T1. Visualize and explore counterfactual explanations:
A key requirement is the ability to analyze counterfactual
explanations (R1). The tool should enable users to visual-
ize and explore counterfactual explanations for single and
clustered regions, displaying which regions are impacted by
particular CFs and how (R2 and R3).
T2. Rank CFs and variables: The tool must rank variables
based on their prevalence and impact within the generated
counterfactual scenarios. This guide highlights the variables
most often involved in successful re-classifications from
unsafe to safe (R2).
T3. Cluster regions: An important requirement is the ability
to analyze sets of regions with similar CFs (R3). To facilitate
cluster-level analysis, the tool should be able to cluster
unsafe regions with similar CFs.
T4. Show spatial distribution of regions: Depicting the spa-
tial distribution of unsafe regions is important for analyzing
the impact of counterfactual explanations (R1, R2, and R3).
T5. Cluster similar counterfactual explanations: Since each
region has multiple associated CFs, organizing the CFs
based on similarity can facilitate the exploratory process
(R1).

T6. Assess the feasibility of CFs: Since CFs generate simu-
lated scenarios, it is essential to determine whether certain
CFs are realistic. To accomplish this, the tool must compare
CFs with the real attributes of safe classified regions and
perform this task (R3).
T7. Provide the capability of integration with data science
tools: The tool will be packaged for seamless integration
into Jupyter Notebooks, ensuring compatibility with stan-
dard Python-based data science workflows.

Our team’s experience analyzing crime-related phenom-
ena inspired the requirements and tasks described above. To
fulfill these tasks, we developed CounterCrime, a Jupyter
Notebook toolbox (described in Section 6). Specifically,
CounterCrime analyzes counterfactual explanations associ-
ated with unsafe regions identified by a machine learning
model.

5 COUNTERFACTUAL EXPLANATIONS

This section discusses the mathematical and computational
foundations underlying the proposed visual analytic tool.
In our context, each data instance corresponds to a spatial
region in São Paulo and is given a classification model. We
will associate each region classified as unsafe with coun-
terfactual explanations, which are the basis of our analysis.
Before detailing how we compute the CFs, we describe the
dataset used to train the model and how the classification
model has been settled.

5.1 Data Set
The 18,953 São Paulo census tracts are the spatial regions
classified as safe or unsafe. Socioeconomic, urban, and his-
torical crime data are aggregated in each region. The Center
provided crime data from 2006 to 2017 for the Study of Vi-
olence - the University of São Paulo (nev.prp.usp.br), which
carefully assembled, curated, and cleaned the datasets. We
have a deep partnership with them to analyze and com-
prehend the origins and characteristics of data, aiming at
a less biased analysis. The total number of crimes from
2006 to 2017 is assigned to each region. Urban infras-
tructure data, such as the location of schools, bus stops,
and bars, were provided by the Center for Metropolitan
Studies (centrodametropole.fflch.usp.br); housing, sanitary
conditions, and population profile are obtained from the
2010 Brazilian census IBGE (ibge.gov.br) Finally, São Paulo’s
subway system provided the urban mobility data (trans-
parencia.metrosp.com.br). All the data are georeferenced
according to the census tracts.

5.2 Identifying hotspots using urban and socioeco-
nomic features
Each census tract corresponds to an instance of data,
whose attributes include urban and socioeconomic vari-
ables. Crime data serve as the dependent variable used for
training the classifier. Specifically, for the case studies in this
paper, we selected the 500 regions (out of 18,953) with the
highest number of crime events, labeling these regions as
zero and the remaining ones as one. This threshold (which
can be adjusted by the user) corresponds to approximately
2.5% of the total and was chosen because these regions are
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sufficiently diverse in terms of associated attributes, thus
exhibiting different patterns. At the same time, selecting 500
regions avoids extreme class imbalance, making it feasible
to train the model directly — i.e., without the need for tech-
niques to handle imbalanced data.
Creating the model. We use a Logistic Regression as the
classification model. The model was trained to hold 20%
of the data for testing, relying on 5-fold cross-validation
to select the parameters and l1 regularization. The model’s
performance was 0.90 in AUC. It is worth mentioning that
despite the Logistic Regression being chosen thanks to good
performance in preliminary experiments, the methodology
is model agnostic.
Defining hotspots. Logistic Regression was used to select
the 500 regions with the lowest probability of being classi-
fied as safe, computing counterfactual explanations for these
regions.

5.3 Counterfactual explanation computation

Given a sample x, counterfactual explanations consist of
creating synthetic samples whose classification differs from
the classification of x. Since we aim to explore scenarios
of change for unsafe regions, we compute counterfactual
explanations that classify a region as safe.

Mathematically, given a sample x and a decision func-
tion r(x), we want to find a new sample x such that
r(x) < τ and r(x) ≥ τ , where τ is a given threshold,
and the new sample x must be as close as possible to
the original sample, that is, x ≈ x. There are a variety
of counterfactual explanations that can lead to the desired
result. Therefore, our approach seeks to compute multiple
and diverse counterfactual explanations [43]. Specifically,
we rely on MAPOCAM [96], an a posteriori multi-objective
optimization algorithm, to find a set of counterfactual ex-
planations.

Let fi(x) = |xi − xi|,∀i ∈ {1, . . . ,m} be a cost function
associated with i-th variable, wherem is the number of vari-
ables and xi,xi are the i-th component of x and x, respec-
tively. Given two CFs x(1) and x(2) if there exists fj(•) and
fk(•) such that fj(x(1)) < fj(x

(2)) and fk(x(1)) > fk(x
(2))

it is impossible to assign an order relation between x(1)

and x(2). The order relation is only feasible if a solution
is better (or worse) for all cost functions. An a posteriori
multi-objective optimization method aims to find a good
representation of all solutions such that no other solution
is better for all objectives; these solutions are called Pareto-
optimal solutions. The MAPOCAM [96] algorithm, detailed
in Appendix A, is a model-agnostic scheme capable of find-
ing multiple Pareto-optimal counterfactual explanations.

More importantly, when the change in feature is used
as an objective in MAPOCAM, any other user preference
can be satisfied within the generated set of counterfactual
explanations [96]: this is a stepping stone to CounterCrime
since we can trust that any advantageous counterfactual ex-
planation is already accessible by the methodology. No other
method surveyed has these properties. The main limitation
of MAPOCAM is to find CFs in a single direction, increasing
or decreasing each variable’s value.

Visual Component T1 T2 T3 T4 T5 T6 T7
CFs’ recommendation filter X X X

Map view X X X
Cluster Comp. X X X
CFs’ Projection X X X

Affordable×Feasible CFs’ View X X X
CFs’ Parallel View X

CFs’ Raw View X X

TABLE 1
Visualization components and requirements attended (see Section 4).

5.4 Ranking variables based on their importance
Considering the set of regions H classified as unsafe, for
each h ∈ H we have a set of counterfactual explana-
tions Ch associated with h. The counterfactual explanations
have a sparse representation in the sense |ai 6= 0,∀i ∈
{1, . . . ,m}| � m, where ai = |xi − xi|;x ∈ Ch. In other
words, just a few attributes of x differ from those in x.
Therefore, it is essential to identify the variables that jointly
are more likely to achieve a counterfactual. To determine
the variables that operate “together” to achieve a CF, we
build a stochastic matrix whose entries correspond to the
probability of selecting a new variable given that we already
picked another one. The stationary state of the matrix (Per-
ron eigenvector) point out the important variables.

In mathematical terms, given the counterfactual expla-
nations Ch of a region h, let cij be the co-occurrence index
indicating the number of times that ai 6= 0 and aj 6= 0.
The entries in each stochastic matrix Ph are given by Ph

ij =
cij∑d

j=1 cij
, what ensures that

∑d
j=0 P

h
ij = 1. The stationary

eigenvector π of Ph satisfies πPh = π, and each entry πi
indicates the importance of the variable i when computing
CFs for the region h. Sorting the entries of π, we get a
ranked list of the most relevant variables considering the
CFs. In other words, the variables tend to be concomitantly
present in the CFs. To compute the variables’ importance
of a set of regions, we average the stochastic matrices of
the regions and compute the stationary eigenvector of the
averaged matrix (ensuring the sum of each row is one).

5.5 Clustering regions based on their counterfactual
explanations
One of the main goals of this work is to find counterfactual
explanations for a set of regions. The idea is to find clusters
of regions that share similar counterfactual patterns.

Assuming that similar regions (in terms of their coun-
terfactual explanations) tend to have similar stochastic ma-
trices, we employed k-means using the Frobenius Norm of
the difference between Stochastic Matrices (Section 5.4). We
empirically set k = 9 in our implementation, observing
the Clustering Comparison View. This number of clusters
enabled a large diversity of patterns, preserving coherence
among the regions in the same cluster.

6 COUNTERCRIME

Based on the requirements outlined in Section 4, we have
created CounterCrime. This powerful visual analytic tool
thoroughly explores counterfactual explanations. Fig. 4
showcases the CounterCrime system, which is comprised
of seven essential components: A CFs’ Recommendation Filter
enables users to explore counterfactual explanations on each
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Fig. 4. The proposed counterfactual explanation-based crime analysis tool, called CounterCrime, is composed of 7 views: A CFs’ Recommender
Filtering, B Map View, C Cluster Comparison. We can see that A allows counterfactual explanations that reduce BusStops to at most 0.31
(thousands) and increases HighIncomeHolder to at most 0.22, the regions in B that are now safer are labeled as white. After that, we can
observe CFs from a specific region by clicking on the map. D shows the CFs’ Projection that can be selected to show overview values in F the
CFs’ Parallel View, and it can be more thoroughly investigated in G CFs’ Raw View. The Affordable × Feasible CFs’ View in D shows how easy
and reasonable it is to make a change that creates the CF.

variable. B Map View visualizes the regions and clusters of
regions. C Cluster Comparison displays the importance of
variables for each cluster of regions. D CFs’ Projection, a 2D
visual representation of CFs. E Affordable×Feasible CFs’ View
is a scatter plot presenting the distribution of counterfactual
explanations based on the distance to their corresponding
original instance and closest safe region. F CFs’ Parallel View
showcases the changes of a cluster of counterfactual expla-
nations. G CFs’ Raw View displays CFs and corresponding
original values for a given region. Table 1 demonstrates the
relationship between each visual component (listed in the
first column) and the associated tasks (T1-T7 columns).

6.1 CFs’ Recommendation Filter

This component is a selector that allows users to choose
a counterfactual value si for a variable i in question, as
depicted in Fig. 4 A . To simplify the concept, let us assume
that we want to decrease the value of a variable xi to a
desired value si. Fig. 4 A shows counterfactual explanations
with BusStops ≥ 0.31 and HighIncomeHolder ≤ 0.22.
Fig. 5 shows the impact of these changes in three unsafe
regions. While CF CF1 and CF5 in Region 1 and C1 in
Region 3 satisfy the chosen threshold, no CF in Region 2
fulfills the filter (although CF5 satisfies the condition of
HighIncomeHolder = 0.22, the BusStops = 0.16, which
violates the filter values).

Counterfactual brushing: This feature selects and presents
counterfactual explanations based on certain thresholds
for each variable. The threshold selection is restricted to
changes in a single direction since the MAPOCAM only
generates CFs with this characteristic. Both the CF Recom-
mendation Filter and the Map View are influenced by the
threshold selection and automatically adjusted to reflect
the filtering. The CF Recommendation Filter reorganizes the
variables according to their importance. It also updates the
internal curves representing the number of regions they will

Fig. 5. CFs’ Recommendation Filtering filters CFs with BusStops≥
0.31 and HighIncomeHolder≤ 0.22. Three unsafe regions with their
original values (columns “Orig”) and 5 corresponding CFs (columns
CF1 to CF5) which offers changes that would make these regions
safe. Based on the filtering thresholds (0.31 and 0.22, respectively),
counterfactuals CF1 and CF5 in region 1 and CF1 in region 3 attend
the filter; thus, they were selected for posterior analysis.

impact. Map View is also updated by changing the colors of
the affected clusters to white, indicating that those regions
are now classified as safe.

6.2 Map View
In Fig. 4 B , the visual component displays unsafe regions
across the city based on a discretization using census units.
The color legend on the right indicates the classification of
each cluster of regions. When one or more CFs are identified
through the CF Recommendation Filter, the affected regions
are changed to be rendered in white. This choice aims to
visually blend these counterfactually altered regions with
the map’s other, inherently safe, non-outlined regions.

Region Selection: Click on that region to explore CFs in a
specific region. This action updates all views (except for the
CF Recommendation Filter, Map View, and Cluster Comparison,
which are global views) to reflect the data associated with
the selected region. The selected region is highlighted with
larger black borders.

6.3 Cluster Comparison
This heatmap (see Fig. 4 C ) visually represents the impact
of each variable in each cluster. The darker cells indicate

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3586202

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

Fig. 6. Case study investigating crime in the whole city. A shows the Hotspots’ Cluster Comparison that guides the investigation in a general and
local manner. B1 and C1 show the result in Map View of different filtering selections of the CFs’ Recommender Filtering in B2 and C2 .D2 and E2
show the CFs’ Recommender Filtering constrained to Clusters 1 and 5 (depicted in Map View in D1 and E1 ).

the most important variables in the cluster. The heatmap
is derived from the stochastic matrix associated with each
cluster. For more details, please refer to Section 5.4.

6.4 CFs’ Projection

After computing counterfactual explanations for an individ-
ual region, a multidimensional projection technique is em-
ployed to project them onto a 2D visual space, as shown in
Fig. 4 D . Each counterfactual is represented as a circle, and
its position is calculated using t-SNE projection. The black
point corresponds to the original variables of the region,
while the CFs are represented as white points. Additionally,
gray points represent safe regions that are closest to a CF.
Lines connect each counterfactual to its nearest safe region,
with longer lines indicating less feasible counterfactuals in
real-world scenarios. The length of these lines represents
a feature distance — specifically, the maximal percentile dis-
tance between the original region and its counterfactual. For
each feature, this distance is calculated as the proportion of
regions with values lying between those of the original and
counterfactual regions. The maximal percentile distance is
then defined as the largest such value across all features.
The legend on the left displays the label of the CFs and the
number of elements in each cluster. At the same time, the
colors in the borders correspond to the selection explained
below.

Cluster Selection: By lasso selection, filtering a cluster of
CFs is possible. The selected elements are clustered and can
be analyzed using CFs’ Parallel View.

6.5 Affordable×Feasible CFs’ View

Fig. 4 E displays the Affordable×Feasible scatter plot, where
each counterfactual is represented as a circle. The position
of each circle represents the counterfactual’s feasibility, with
the x-axis indicating the normalized distance between the
counterfactual instance and its associated original instance
and the y-axis representing the distance from the CF to the
closest safe region in the original data.

Each quadrant of the Affordable×Feasible CFs’ View has
a distinct interpretation. The desired CFs lie in the lower-
left quadrant since they are close to the original values
and a region classified as safe. The lower-right quadrant
represents CFs that are more difficult to achieve (farther
from the original value) but still feasible in the real world
since they are close to a region classified as safe. CFs in
the upper-left quadrant are close to their host instance.
However, their feasibility in the real world is uncertain since
they are far from the nearest region classified as safe. The
upper-right quadrant contains CFs that are not desirable,
hard to achieve, and far from a region classified as safe,
making them the least favorable.
Cluster Selection: Lasso selection allows filtering a subset
of CFs that meet specific criteria. The selected elements can
then be clustered and analyzed using the CFs’ Parallel View.

6.6 CFs’ Parallel View
To more effectively analyze clusters that have been
interactively selected using the CFs’ Projection and
Affordable×Feasible View, we have created a visual repre-
sentation demonstrating each variable’s changes (see Fig. 4
F ) for the selected cluster. Each cluster is depicted using
vertical parallel coordinates, with the polylines representing
each counterfactual. The position of each line in the coor-
dinate system reflects the magnitude of the change for that
particular variable. The center of the coordinates represents
the original value, with the orientation to the left indicating
a decrease from the actual value and the direction to the
right showing an increase.

6.7 CFs’ Raw View
The view shown in Fig. 4 G provides detailed informa-
tion about the counterfactual explanations of a particular
region. The first column displays the original values for
each variable, while the remaining columns correspond to
the counterfactual explanations. Each cell within the table
indicates the value needed for that variable to achieve the
desired outcome.
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6.8 Implementation Details

CounterCrime is a Jupyter-Notebook system that utilizes
the Widget framework and a Python3 visual library. The
system includes modules for computing and visualizing
CFs. Sklearn [97], Pandas [98], and Numpy [99] Python
libraries were employed to calculate Logistic Regression,
CFs, stochastic matrix, census block clusterization, and fil-
tering. Visualization resources were developed using Plotly
with Python interface widgets for geo-map representations,
cluster heatmaps, CFs Raw View, and choropleth maps.
D3.js [100] was used to create the projection scatter plots,
parallel coordinates, and line charts. Each visualization
metaphor was implemented as a class communicating with
other classes through callback functions. Finally, we have
developed a bi-directional communication channel between
Jupyter-Notebook and CounterCrime to manage the combi-
nation of Python libraries and visualization tools. To facili-
tate testing of the system, a Docker container has been made
available in the Supplemental Material.

7 EVALUATION

In this section, we present two case studies that, informed
by our team’s substantial experience in criminology, employ
the proposed methodology to analyze scenarios of crime
reduction using real crime data from São Paulo, Brazil.
The first case study focuses on a global analysis of CFs for
multiple regions and addresses analytical tasks T1, T2, T3,
and T4. The second case study, on the other hand, focuses
on a single region and its CFs, addressing analytical tasks
T5 and T6.

7.1 Case Study 1: Reducing crime in the whole city

This study evaluates the impact of allowing counterfactual
explanations with multiple variables to analyze what may
influence crime on hotspots (unsafe regions) across the city.
The study also aims to understand how different variables
affect other parts of the city or region’s clusters.

To conduct this case study, we use the system to ana-
lyze changes that influence crime on hotspots of the entire
city (as shown in Fig. 6). Firstly, we analyze the most
critical variables across the city in Cluster Comparison A .
The analysis reveals that BusStops, HighIncomeHolder,
and ExpansionPhase are the most critical global variables
(top variables). However, despite not significantly impact-
ing the whole city, we observe that Passengersand Bars
are essential for Cluster 7 and 8, respectively, and both
are important for Cluster 4. As described in Section 6.1,
the CF Recommendation Filter ranks the variables by their
importance by allowing counterfactual explanations using
brushing. Brushing variables allows the counterfactual ex-
planations in that range to re-rank the remaining variables
using dangerous regions. With this mechanism, B2 shows
brushing in the variables BusStops, ExpansionPhase,
and HighIncomeHolder using the CF Recommendation Fil-
ter. We chose to allow CFs that would not change too ag-
gressively. The white regions in B1 indicate that BusStops,
ExpansionPhase, and HighIncomeHolder could reduce
the number of regions classified as unsafe in 84% of the
city. Notably, Bars and Passengers are the most critical

non-selected variables for the remaining hotspots (fourth
and fifth line charts in B2 ). As mentioned earlier, these
variables are essential to Clusters 4 (purple) and 8 (pink),
which remain with many regions classified as unsafe.

However, the ExpansionPhase variable cannot be
changed as it indicates the urbanization period of a re-
gion. As a result, we have decided not to allow coun-
terfactual explanations with this variable. After apply-
ing the CF Recommendation Filter, we selected Bars and
PopulationDensity as two significant variables. The
white regions in C1 indicate similar regions classified as
safe due to CFs. However, a majority of the unsafe re-
gions still belong to Cluster 1 (red), 4 (purple), and 8
(pink). Cluster Comparison A reveals that BusStops and
HighIncomeHolder are not essential for Clusters 4 and
8. In contrast, BusStops has high importance in Cluster 1
(darker blue indicates higher significance).

The CF Recommendation Filter displays lines for each vari-
able that show the proportion of regions classified as safe
(y-axis) when a variable is brushed (x-axis). The increase
or decrease in safety is determined by the extent of CFs
allowed from other variables. Two distinct scenarios are
analyzed - the CF Recommendation Filter and Map View for
Clusters 1 (the red one, with most of the hotspots) and
Cluster 5 (the orange one, with almost all regions classified
as safe). For Cluster 5, it is observed from the lines in E2

that safety can be improved by reducing BusStops to 0.31,
resulting in almost all regions being classified as safe (the
line approaches 1 after 0.31, with a rapid decrease before
that). No other variable shows a significant loss (all variables
remain at the same level regardless of the x-axis value). In
contrast, for Cluster 1, the lines in D2 show that the number
of regions classified as safe (y-axis) changes similarly by
moderately allowing CFs in any of the three most relevant
variables. Except Bars (x-axis change does not affect y-
axis), the top three ranked variables significantly impact
when their values are moderately brushed. Therefore, these
three variables must be considered to determine an optimal
safety configuration for this cluster. This conclusion is sup-
ported by previous research on the impact of income [101],
[73], [6], bars or liquor stores [102], [103], [11], [12], bus
stops [104], [105], [106], and population [1], [107], [2]. The
proposed tool helps emulate, according to the model, the
combination of factors that are most influential in the sce-
narios associated with each region, cluster, and city under
study.

Despite the CF Recommendation Filter presenting the most
critical variables for the remaining hotspots, specific re-
gional cases require different strategies. Moreover, using a
CF Recommendation Filter for specific clusters can drastically
reduce the exploration time.

7.2 Case study 2: Investigating counterfactual explana-
tions on specific regions

This study aims to analyze the counterfactual explanations
in specific regions that could not change the classification
to safe when exploring counterfactual scenarios by clusters.
Here we will evaluate the affordability (i.e., how easy it is
to change from the current state) and the feasibility (if there
are any records of these changes in another region) of the
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Fig. 7. Case study investigating single regions. A and D show CFs’ Projection with two selections that represent the most affordable and feasible
counterfactual explanations on B and E . C and F overview the selection using CFs’ Parallel View.

found counterfactual explanations. From now on, we refer
to Fig. 7 for this case study.
Analyzing the Sé region in São Paulo: We selected the first
region using the selection tool in Map view. It consists of a
region called Sé, which corresponds to cluster 4 in Fig. 6
(first row in Fig. 7). Sé is located in the central area of São
Paulo with an intense flow of people, a reduced number of
local population, and high crime rates.

We use the Affordable × Feasible CFs’ View A to select
the most affordable (brown points) and the most feasible
(yellow points) counterfactual explanations for the Sé region
are the points with the lowest value on the X and Y axes,
respectively. Then, we use the CFs’ Projection B to find other
counterfactual explanations similar to those selected. We do
this so that CFs’ Parallel View C shows how the variables
vary in the selected counterfactual explanations.

Analyzing the CFs’ Parallel View C , we can see that
(i) the most affordable counterfactual explanations (brown
selection) are defined by a decrease in the number of Bars
and Passengers; and (ii) the most feasible counterfactual
explanations (yellow selection) are defined by an increase in
the HighIncomeHolder variable.

Analyzing those counterfactual explanations, we find
that: The first cluster of counterfactual explanations is not
feasible because, in downtown areas of a big city like
São Paulo, people pass through going to work and other
activities, including going to bars at night. Then, applying
this kind of public policy, reducing Bars and Passengers
would not have a basis in reality. The second cluster is a
better counterfactual scenario because Sé has good infras-
tructure, a common trait in safe areas. However, Sé is also a
poor region; thus, increasing the income of local people who
live there would also increase the probability of that region
being classified as safe.
Analyzing the Itaim Bibi region in São Paulo. We selected
the second region using the selection tool in Map view. It
consists of a region called Itaim Bibi from cluster 8 in Fig. 6
(Second-row in Fig. 7). Itaim Bibi is a rich and sophisticated
region known for its corporate headquarters and intense
nightlife.

We proceed in the same way as the previous region,
using the Affordable × Feasible CFs’ View D and then the
CFs’ Projection E to select clusters with the most afford-
able (purple selection) and most feasible (orange selec-
tion) counterfactual explanations. Analyzing the CFs’ Par-
allel View F , we can see the following: (i) an increase
in the HighIncomeHolder defines the most affordable
counterfactual explanations (purple selection); and (ii) an

increase in the PopulationDensity variable defines the
most feasible counterfactual explanations (orange selection).

Analyzing the selected clusters, we can conclude that:
We cannot ensure whether it is a good or bad set of counter-
factual explanations. It would require a deeper analysis to
understand why increasing income in a rich region would
be affordable. However, we do not find this variable in
the feasible counterfactual explanations because it is hard
to find wealthier regions with the same characteristics as
this region. The second group of counterfactual explanations
effectively addresses the issue, as Itaim Bibi, a wealthy
region with low population density, would attract criminals.
Thus, improving the density of inhabitants would be a good
factor that might positively influence criminality. The sys-
tem reinforces its found regions with similar characteristics
to Itaim Bibi but with increased population density.

Sé and Itaim Bibi are regions with different character-
istics but with a high level of crime. Sé is a depopulated
region in downtown São Paulo with a high flow of people
that attracts criminal events. On the other hand, Itaim Bibi
is a highly populated region with a low flow of people with
high incomes (corporate headquarters and intense nightlife)
that attracts criminals. Therefore, the feasible counterfactual
explanations in both regions are very different because both
regions differ in nature.

These examples do not mean that we should use these
counterfactual explanations because our system does not
intend to implicate causal relations. We aim to demonstrate
how using our system can create different counterfactual
scenarios with other characteristics. It is up to public policy
decision-makers to determine which would be more appro-
priate to put into practice.

8 EVALUATION

To evaluate CounterCrime’s effectiveness, we employed a
dual-method approach that examined its technical perfor-
mance and practical relevance in real-world applications.
This evaluation involved a user study with computer sci-
ence experts and interviews with professionals in the crime
domain.

8.1 User Study
CounterCrime has been designed to help professionals ana-
lyze how different attributes relate to a model’s classification
of crime. To evaluate the effectiveness of the proposed tool,
we gathered the experts’ opinions about the methodology,
functionalities, and visual components. They also examined
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the system and library modules, including machine learning
and visualization tools. Here we present a summary of
results, a detailed report of the users’ responses is presented
in Appendix B.1.

Participants: We recruited 12 professionals from distinct
fields such as programming, computer science, data science,
mechatronics, mathematics, and physics. These participants
work as data scientists, researchers, and machine learning
practitioners with 1 to 12 years of experience applying their
expertise to crime analysis (mean = 3.33, SD = 2.8).

Procedure: The evaluation took place in one-on-one, face-
to-face sessions. Initially, we presented the methodology
with working examples. Using these examples, participants
performed Task 1, which involved reproducing the exam-
ples provided earlier. Next, we introduced the components
detailed in Sections 6.1 to 6.7, structured as classes joined
by callback functions and the dataset. Participants then
performed Task 2, which involved interacting with the note-
book containing these modules to assess their practically in
implementing additional visualizations.

After completing the tasks, we collected feedback on the
CounterCrime system, methodology, case studies, and func-
tionalities. Participants responded to quantitative questions
(QT) on a Likert scale (1 to 5) and qualitative questions (QL).

Quantitative questions: (QT1) “How relevant do you consider
the proposed crime analysis tool?.”; (QT2)“How easy is it to
perform crime analysis on the system?.”; (QT3) “Given a dataset
containing urban, socioeconomic, and crime data, how easy is
it to run crime analysis in other localities?.”; (QT4) “To what
extent does the proposed approach simplify the integration of new
visualization and data analysis modules for crime analysis?.”;
(QT5) “How easy is it to modify parts of CounterCrime to perform
data analysis in other contexts?.”;

Qualitative questions: (QL1) “How do you perceive the inte-
gration with Jupyter Notebook in terms of enhancing the tool’s
versatility?”; (QL2) “Describe potential applications for this tool
beyond crime analysis?”; (QL3) “What are your views on the
effectiveness of CounterCrime in analyzing crime-related phenom-
ena?.”; (QL4) “Are you familiar with other visualization tools
that perform similar analyses? If so, what aspects of Counter-
Crime make it superior to those methods?”; (QL5) “What are the
limitations or disadvantages of CounterCrime when compared to
other methods?”.

Results: Fig. 8 summarizes the result of the quantitative
user evaluation, showing that the proposed method has
been positively evaluated. The statistics from the twelve
participants are : Relevance (Mean = 4.67, SD = 0.47),
Ease of Use (Mean = 4.17, SD = 0.68), Adaptabil-
ity (Mean = 4.83, SD = 0.55), Integrative Capability
(Mean = 4.67, SD = 0.47), and Flexibility (Mean =
4.16, SD = 1.14).

The outcome of the qualitative evaluation can be sum-
marized as follows:

Module Flexibility (QL1 and QL2). Participants consid-
ered the modularization of the analysis and visualization
tools in CounterCrime quite adequate. They noted that the
flexibility the proposed methodology provides facilitates the
application of counterfactual explanations to other domains
such as COVID-19, air pollution, agriculture, and education.

Fig. 8. Responses from twelve computer experts not involved in the
tool’s development. The bars are colored according to the expert’s Likert
scale answers.
Some participants pointed out that the system might not
be scalable but suggested that exporting the counterfactual
results to a dashboard could address this issue. A partici-
pant commented: “The integration is beneficial, as it enhances
the tool’s versatility by enabling the creation of interactive and
dynamic charts directly within Jupyter. This makes data analysis
more efficient and facilitates the communication of insights in an
engaging manner.”

Usefulness (QL3 and QL4): Most computer experts af-
firmed that CounterCrime is a valid tool to understand
crime and propose changes. They noted that while the pro-
posed changes may not be direct due to the set of variables,
the tool can be used to find alternative ways to address
the issues. An expert commented: “Generating counterfactual
explanations and allowing interaction with the modified attributes
is a strong novelty of this framework. Furthermore, the portability
of the notebook eases sharing with distinct stakeholders in urban
data analysis.”

Limitations (QL5): The main limitations identified by the
experts include the constraints of the data (only a few vari-
ables could be effectively changed), the lack of identification
of the closest safe region, and the need for a comprehensive
tutorial to understand the system. An expert remarked: “To
improve the capability of the framework, it would be necessary to
find data about policing (allocation of police personnel and police
vehicles) and use data already available in the system at a higher
resolution (yearly, for example). It could help to figure out less
costly changes to fighting crime.”

8.2 Domain Expert Review

We conducted interviews with three crime experts with
backgrounds in economics. These experts are researchers
and authorities who have been actively working on real-
world crime phenomena for 2, 9, and 13 years, respec-
tively. We demonstrated CounterCrime’s functionalities by
presenting the methodology, including some working ex-
amples, as well as its functionalities and visual compo-
nents. We then addressed questions about the system and
basic concepts such as the dataset, clustering, the machine
learning model, and counterfactual explanations. Finally, we
collected their feedback. Here we present a summary of
results, a detailed report of the users’ responses is presented
in Appendix B.2.

Methodology – global analysis: The analysis using the
CFs’ recommendation filter was appreciated for explaining
important variables, and the interactive filtering enables
possible planning interventions. The clustering of regions
was considered fundamental for understanding similarities
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among areas. The shortcoming was the dataset, which in-
cluded only a few variables. One of the experts commented:
(1) “The significance of bus stops (the most important variable)
is a good indication of what we would expect in passerby crimes.
The differences among clusters can reveal the dynamics of each
locality.”; (2) “The interactive updates can help us understand
the most relevant factors for each location. It assists in planning
focused interventions and comprehending criminality in detail..”
Methodology – local analysis: The local analysis evaluated
whether a policymaker can use the (synthetic) counterfac-
tual explanations to reduce regional criminality. One expert
raised a concern about the method’s lack of guarantees
regarding causality. Another expert noted: “An example of
a real region can facilitate the proposition and understanding of
interventions by policymakers. My only concern is if the most
similar safe region is too different from the analyzed localities. But
this is a secondary concern”.
Usability: A domain expert mentioned (1) “This framework
helps diagnose criminogenic factors and propose changes to re-
duce crimes in particular regions.” (2) “The suggested changes
(reduction of bus stops, increase in income, and decrease in
population) might involve other costs that might not be feasible
to a policymaker. However, it is important to know which regions
are similar and the relative importance of those counterfactual
explanations that reduce criminality. The variable importance
and counterfactual explanations might be useful in making other
decisions not covered by the framework, for example, increasing
safety at bus stops and police presence in some places.”
This work concluded successfully, opening new research
avenues in crime analysis. One of the crime experts com-
mented: “I would use this framework daily to gather crimino-
genic and protective factors for a locality and use it as a starting
point to propose local interventions.” Additionally, a computer
expert remarked: “In my opinion, this framework contributes to
research in many other fields”.

9 DISCUSSION AND FUTURE WORK

CounterCrime satisfies the requirements of analysis in the
current research stage of counterfactual explanations by
enabling the exploration and validation of multiple counter-
factual explanations in various regions. However, there are
limitations and future work that would expand the research
on counterfactual explanations and crime analysis.

Distinct and multiple machine learning models. As dis-
cussed in Section 5, CounterCrime is not limited to any
specific classifier, but this early approach uses Logistic Re-
gression, which already showed a rich analysis. However,
enriching the system with multiple, diverse classifiers to
validate the counterfactual explanations would increase the
analysis’s robustness and reliability.

Counterfactual explanations and multiple crime types (or
other social goals). This work focuses on Passerby rob-
bery, but changing to another crime type would be simple.
However, using counterfactual explanations to change one
type may change other relevant goals. To address this, the
Map View can show the effect of filtered counterfactuals
on the model’s classifications for other crime types or other
social goals; for example, reducing bus stops may force
people to use cars more frequently, causing traffic jams and

pollution. In regional analysis, other views, such as parallel
coordinates, can evaluate the impact of each counterfactual
on other social goals, indicating the probability of a region
being safe and other impacts. Finally, the generation of
counterfactuals can be adapted to changes that make a
region better to all social goals simultaneously.
Scalability issues. The research relies on a small set of
variables to avoid issues that arise when increasing the
number of variables. For example, increasing the number
of variables can create problems in accurately identifying
critical variables for clusters in Cluster Comparison and in the
extensive list of variables for CFs’ Recommender Filtering. The
recommendation mechanism partially solves this issue, and
two solutions could be grouping variables by similar impact
or identifying and highlighting possible pairs of variables.
Dataset limitations. This research relied on a small set of
variables available at official public institutions in Brazil,
which did not include the most appropriate variable that
policymakers could easily change. In future research, we
aim to close deeper partnerships with public institutions
to have access to more changeable variables such as police
patrol, urban maintenance, graffiti, public illumination, and
street vendors. We state this step as future work due to
the necessity of long and bureaucratic talks, but we think
it would result in a reliable tool to plan policies for crime
reduction.
Quality of dataset and fairness aspects The data gath-
ering and curation of this paper were done closely with
professionals of NEV (Center of Study of the Violence)
with vast experience in crime analysis in São Paulo and
developing different projects concerned with Democratic
Policing, Human Rights, Race victimization, and society
data bias (see NEV Publications). The crime records were
provided by the Police department to NEV experts, and
experts assembled, curated, and cleaned the datasets. Even
with this care, we know that this type of dataset has its
shortcomings in ethical aspects, mainly because of the lack
of documented police occurrences affecting marginalized
people and a high incidence of documented occurrences
committed by marginalized people. Because of this, the
usage of fairness models was considered in this work, but
it was beyond the scope of this work. Fairness modeling
demands the definition of desired outcomes and sensible
variables. Still, increasing police in marginalized people
might be good or bad depending on the optics; the sensible
variable is also unclear. This definition’s subjectivity and the
lack of fairness for our problem made this contribution out
of our scope.
Limitations of crime analysis on policing. Integrating
crime analysis into policing has significantly influenced
strategies by enhancing predictive capabilities and opti-
mizing resource allocation. Technological tools now utilize
vast amounts of data to forecast potential crime hotspots
and identify individuals who might be at risk of engaging
in criminal activities or becoming victims. For instance,
the works of Lum and Isaac (2016) and Richardson et al.
(2019) discuss how predictive policing systems leverage
historical crime data and sophisticated algorithms to an-
ticipate criminal activities [108], [109]. However, reliance
on biased data — often referred to as “dirty data” — can
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perpetuate existing social inequalities, reinforce problem-
atic policing practices, and introduce new biases into law
enforcement [109], [110], [111].

Furthermore, studies by Amiruzzaman et al. (2022) high-
light how AI can analyze urban environments and social
behaviors to correlate visual diversity with crime, thereby
informing police deployment and urban planning [112],
[111]. These tools, however, must be employed with cau-
tion to avoid reinforcing discriminatory practices. Several
studies emphasize the critical need for transparency, ac-
countability, and eliminating biases in data used for predic-
tive models [108], [109], [111], [110]. Implementing ethical
considerations and ensuring data accuracy in AI-driven
crime analysis is paramount for maintaining public trust
and achieving equitable crime reduction [110], [111].
Generalization to other datasets. We built a methodology
for analyzing crime patterns that could be directly employed
to analyze counterfactual explanations in any data. Maybe
the Map View may not be applicable in some contexts; many
datasets contain a spatial component. We plan to use our
system with datasets such as COVID-19 infection risk, car
crash incidents, or traffic jams to generalize our results
in future work. Scatter plots with user-selected relevant
variables could also benefit other fields, such as medical
diagnosis and loans.
Relation with explainability methods. Feature attribution
explanation methods [113], such as SHAP, aim to determine
the importance of each feature for the model decision.
While SHAP gives additive feature attribution (how much a
specific variable contributes to the prediction of a sample),
and LIME provides local importance to each variable, coun-
terfactual explanations provide information using concrete
examples in the original feature space, therefore avoiding
adding a new level of abstraction, as feature attribution
does. This makes the outcome of counterfactual fully in-
terpretable and useful for identifying specific adjustments
to produce a desired result. However, not all exploratory
scenarios may be feasible in practice. Therefore, experts
need to review these scenarios and assess their practical
viability.

10 CONCLUSION

In this work, we present a visual framework for evalu-
ating counterfactual explanations in crime analysis, which
has two key benefits: (1) it provides a framework using
counterfactual explanations (built over a machine learning
model acting as proxy of real data) for emulating crime
scenarios across the city, and (2) enables the exploration
of hypothetical change scenarios within the feature space,
offering insights into what changes the model associates
with influencing crime classifications in unsafe regions. The
proposed visualization mechanics provide practical guid-
ance for understanding the different variables’ role in these
counterfactual scenarios and how those scenarios affect the
model’s classifications across the city. The clustering proce-
dure and its related visualization aid in identifying clusters
of regions with similar counterfactual explanations. Visual-
ization tools at the local level help analyze clusters of coun-
terfactual explanations and their costs compared to actual
regions classified as safe. The work shows that crime is not

uniform throughout the city, and the same counterfactuals
can similarly affect clusters of regions. The understanding
gained from these clusters can inform decision-makers in
considering targeted approaches, potentially optimized for
each cluster based on the model’s sensitivities. Our work
represents a relevant step towards supporting the decision-
making process for public policies related to crime. Addi-
tionally, implementing CounterCrime as a Python library
that can be used directly in Jupyter Notebooks simplifies
the analysis process, allowing analysts to use their standard
frameworks and only call our tool when necessary.
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[88] L. J. S. Silva, S. Fiol-González, C. F. Almeida, S. D. Barbosa,
and H. Lopes, “Crimevis: An interactive visualization system for
analyzing crime data in the state of rio de janeiro.,” in ICEIS (1),
pp. 193–200, 2017.

[89] G. Garcia-Zanabria, E. Gomez-Nieto, J. Silveira, J. Poco, M. Nery,
S. Adorno, and L. G. Nonato, “Mirante: A visualization tool for
analyzing urban crimes,” in Conference on Graphics, Patterns and
Images, pp. 148–155, IEEE, 2020.

[90] D. Wang, W. Ding, H. Lo, M. Morabito, P. Chen, J. Salazar, and
T. Stepinski, “Understanding the spatial distribution of crime
based on its related variables using geospatial discriminative
patterns,” Computers, Environment and Urban Systems, vol. 39,
pp. 93–106, 2013.

[91] G. D. Breetzke and A. L. Pearson, “The fear factor: Examining the
spatial variability of recorded crime on the fear of crime,” Applied
Geography, vol. 46, pp. 45–52, 2014.

[92] M. Craglia, R. Haining, and P. Wiles, “A comparative evaluation
of approaches to urban crime pattern analysis,” Urban Studies,
vol. 37, no. 4, pp. 711–729, 2000.

[93] M. B. Short, P. J. Brantingham, A. L. Bertozzi, and G. E. Tita,
“Dissipation and displacement of hotspots in reaction-diffusion
models of crime,” PNAS, vol. 107, no. 9, pp. 3961–3965, 2010.

[94] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker,
“Gamut: A design probe to understand how data scientists
understand machine learning models,” in Proceedings of the 2019
CHI conference on human factors in computing systems, pp. 1–13,
2019.

[95] Q. Wang, Z. Xu, Z. Chen, Y. Wang, S. Liu, and H. Qu, “Visual
analysis of discrimination in machine learning,” IEEE TVCG,
vol. 27, no. 2, pp. 1470–1480, 2020.

[96] M. M. Raimundo, L. G. Nonato, and J. Poco, “Mining pareto-
optimal counterfactual antecedents with a branch-and-bound
model-agnostic algorithm,” Data Mining and Knowledge Discovery,
pp. 1–33, 2022.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[98] T. pandas development team, “pandas-dev/pandas: Pandas,”
Feb. 2020.

[99] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Vir-
tanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith,
R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Hal-
dane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, pp. 357–362, Sept. 2020.

[100] M. Bostock, “D3.js - data-driven documents,” 2012.
[101] B. Boldis, M. San Sebastián, and P. E. Gustafsson, “Unsafe and

unequal: a decomposition analysis of income inequalities in fear
of crime in northern sweden,” International journal for equity in
health, vol. 17, no. 1, pp. 1–13, 2018.

[102] T. Hu, X. Zhu, L. Duan, and W. Guo, “Urban crime prediction
based on spatio-temporal bayesian model,” PloS one, vol. 13,
no. 10, pp. 206–215, 2018.

[103] M. Hobbs, L. Marek, J. Wiki, M. Campbell, B. Deng, H. Sharpe,
J. McCarthy, and S. Kingham, “Close proximity to alcohol out-
lets is associated with increased crime and hazardous drinking:
Pooled nationally representative data from new zealand,” Health
& Place, vol. 65, pp. 1–7, 2020.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3586202

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



16

[104] R. Zahnow and J. Corcoran, “Crime and bus stops: An exam-
ination using transit smart card and crime data,” Environment
and Planning B: Urban Analytics and City Science, vol. 48, no. 4,
pp. 706–723, 2021.

[105] T. D. Stucky and S. L. Smith, “Exploring the conditional effects of
bus stops on crime,” Security Journal, vol. 30, no. 1, pp. 290–309,
2017.

[106] R. F. Abenoza, V. Ceccato, Y. O. Susilo, and O. Cats, “Individual,
travel, and bus stop characteristics influencing travelers’ safety
perceptions,” TRR Journal, vol. 2672, no. 8, pp. 19–28, 2018.

[107] L. G. Alves, H. V. Ribeiro, and R. S. Mendes, “Scaling laws in the
dynamics of crime growth rate,” PHYSA Journal, vol. 392, no. 11,
pp. 2672–2679, 2013.

[108] K. Lum and W. Isaac, “To predict and serve?,” Significance, vol. 13,
no. 5, pp. 14–19, 2016.

[109] R. Richardson, J. M. Schultz, and K. Crawford, “Dirty data, bad
predictions: How civil rights violations impact police data, pre-
dictive policing systems, and justice,” NYUL Rev. Online, vol. 94,
p. 15, 2019.

[110] B. Taylor, A. Kowalyk, and R. Boba, “The integration of crime
analysis into law enforcement agencies: An exploratory study
into the perceptions of crime analysts,” Police quarterly, vol. 10,
no. 2, pp. 154–169, 2007.

[111] C. Sanders and C. Condon, “Crime analysis and cognitive effects:
the practice of policing through flows of data,” in The Policing of
Flows, pp. 73–91, Routledge, 2020.

[112] M. Amiruzzaman, Y. Zhao, S. Amiruzzaman, A. C. Karpinski,
and T. H. Wu, “An ai-based framework for studying visual
diversity of urban neighborhoods and its relationship with socio-
demographic variables,” Journal of Computational Social Science,
vol. 6, no. 1, pp. 315–337, 2023.
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