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Abstract—Conserving tropical forests is a global imperative,
yet accelerating deforestation — driven in part by industrial
mining — demands timely, fine-grained monitoring. Most existing
platforms provide only coarse regional summaries, obscuring
the emergence and growth of individual mines. We introduce
MineTracker, a novel visual analytics tool that delivers site-level
spatiotemporal insights into mining across the Brazilian Amazon.
The system overlays annual mining footprints on key territorial
boundaries (Indigenous lands, municipal limits) and applies time-
series clustering to surface characteristic growth trajectories.
Applied to Roraima, MineTracker revealed a pronounced surge of
mining within legally protected Yanomami territory, illustrating
its capacity to expose actionable trends and support evidence-
based forest conservation and land governance decisions.

I. INTRODUCTION

Tropical forests are indispensable to global climate regula-
tion and biodiversity conservation. Acting as vast carbon sinks,
they help curb global warming while providing habitat for
more than half of the planet’s terrestrial species. Continued
degradation releases large quantities of greenhouse gases and
pushes countless species toward extinction, highlighting the
urgency of safeguarding these ecosystems [1].

Industrial-scale mining now encroaches deeply into intact
rainforest regions, such as the Amazon, producing both direct
and indirect deforestation [2]. From 1985 to 2023, mining
alone cleared roughly 0.31 million ha of Amazonian forest [3].
New access roads built to service mines open remote areas
to additional settlement and logging, amplifying forest loss.
Mining also threatens Indigenous communities through mer-
cury contamination and other pollutants [4]. These impacts
underscore the need for systematic, high-resolution monitoring
of mining activities.

Satellite remote sensing has become the cornerstone of land-
cover monitoring. Projects such as Global Forest Watch, Ama-
zon Mining Watch, and MapBiomas combine satellite imagery
with computer vision and machine-learning techniques to map
forest change at increasingly fine resolution [5]–[7]. However,
most products remain region-scale, limiting analyses of how
individual mines emerge, expand, or decline over time.

We present MineTracker, a visual analytics system that
tracks mining at the site level, designed to help researchers,
policymakers, and organizations monitor land use and environ-
mental changes. Using the MapBiomas Mining Collection 9
dataset [8] on Google Earth Engine, we first extract annual
mining polygons, merge them into coherent mining sites,

and compute each site’s area and yearly growth trajectory.
We then cluster sites by their temporal signatures to reveal
characteristic development patterns. Finally, linked interactive
views allow analysts to examine spatiotemporal trends, com-
pare clusters, and drill down to individual sites.

Our main contributions are:

• A data-processing pipeline that delineates, aggregates,
and clusters mining sites from annual polygon maps.

• MineTracker, an interactive visual analytics tool that
supports site-level exploration of mining dynamics in the
Brazilian Amazon.

• Two case studies illustrating how the system uncovers
actionable patterns of mining expansion and decline.

II. RELATED WORKS

Land-use and land-cover (LULC) monitoring is a cor-
nerstone of environmental data science. Large-scale initia-
tives such as Global Forest Watch [5] and the MapBiomas
project [7], [9] exploit Google Earth Engine [10] to compile
multidecadal statistics — e.g., deforestation and urban expan-
sion — at national, state, and municipal levels. The Dynamic
World dataset [11] further extends these efforts by providing
10m, near-real-time land-cover classifications. Nevertheless,
the sheer volume, spatial resolution, and temporal cadence of
such data pose major analytical challenges.

Several visualization tools have emerged to help users
explore spatiotemporal LULC change. Global Forest Watch,
MapBiomas, and Dynamic World each provide interactive
web portals featuring animated playback of annotated maps,
giving an immediate sense of temporal evolution. Esri’s Land
Cover Explorer [12] enables side-by-side “swipe” comparisons
of map layers across years, while Earth Map [13] offers a
dashboard-style exploration of diverse geospatial datasets. Al-
though these tools reveal macro-level trends, they treat entire
administrative units as the fundamental entity of analysis, often
masking site-specific or time-dependent behaviors.

Within the mining domain, Amazon Mining Watch [6]
publishes annual maps that delineate mining patches derived
from satellite imagery. While invaluable for locating mines
and approximating their extent, the platform lacks quantitative
tools for site-level area analysis or temporal trend detection.
Consequently, users struggle to isolate anomalous activity in
a single mine or to identify clusters of sites exhibiting similar
growth trajectories.979-8-3315-8951-6/25/$31.00 ©2025 IEEE



Existing systems, therefore, share three main limitations: (i)
weak support for outlier detection and correction of classifi-
cation errors; (ii) limited facilities for discovering group-level
temporal patterns; and (iii) insufficient detail for fine-grained
cross-region comparisons.

In contrast, our proposal, MineTracker, is an interactive
visual analytics system purpose-built for site-based mining
analysis. By focusing on individual mines and enabling side-
by-side comparisons, it offers a flexible framework for under-
standing mining dynamics across the Brazilian Amazon.

III. SYSTEM OVERVIEW

This section outlines the design methodology underpinning
MineTracker, including the system requirements, core analyti-
cal tasks, and high-level workflow that guided its development.

A. System Requirements

We conducted a literature review and drew on the experi-
ence of one author who had previously worked on multiple
land-use monitoring projects. This process informed a set of
requirements that build on the strengths — and address the
shortcomings — of existing interactive visual analytics tools
for LULC exploration (Sec. II), with a particular emphasis on
fine-grained analysis of mining sites.

R1. Site-level spatiotemporal analysis. Analysts must in-
spect the evolving footprint of individual mines to determine
whether activity is expanding, stabilising, or declining and
to flag anomalous change that could signal misclassification.
The fine-grained resolution also enables comparison across
municipalities, protected areas, or Indigenous territories.

R2. Integrated satellite imagery for visual validation. Up-
to-date, high-resolution imagery (e.g., Sentinel-2, PlanetScope)
provides essential context for confirming algorithmic classi-
fications, gauging recent environmental impact, and spotting
artifacts — particularly in small or fragmented sites where false
positives are common.

R3. Scalable summarization of large site collections. The
Brazilian Amazon is home to numerous mining sites. Cluster-
ing mines with similar temporal signatures and then offering
aggregated views of those clusters reduces cognitive load,
helping users focus on groups or outliers worthy of deeper
investigation.

B. Analytical Tasks

Guided by the system requirements, we distilled five core
analytical tasks that MineTracker must support:

T1. Track site-level area and growth. Allow users to
monitor how each mine’s footprint evolves in the absolute
area (km2) and year-over-year growth rate while flagging
anomalous surges or contractions (R1).
T2. Compare activity across regions and land categories.
Enable side-by-side comparison of mining extent among mu-
nicipalities and between Indigenous and non-Indigenous terri-
tories, exposing spatial inequalities and temporal shifts (R1).
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Fig. 1. MineTracker workflow. (A) Polygons are extracted from MapBiomas
raster masks. (B) Polygons are clustered to create mining sites; territorial
information is added, and area time series are computed and used to form
mining-site clusters. Relevant satellite images are then downloaded. (C) The
processed data is visualized through an interactive web-based tool.

T3. Map spatial context. Overlay mining sites on admin-
istrative boundaries, protected-area limits, road networks, and
other reference layers so analysts can interpret patterns within
their geographic setting (R2).
T4. Inspect multi-temporal imagery. Present co-registered
satellite scenes from different years in a single view, permitting
rapid visual assessment of land cover change and verification
of automated classifications (R2).
T5. Explore behaviour-based clusters. Group sites with
similar temporal signatures, summarise each cluster’s charac-
teristic trajectory, and let users drill down from overview to
individual mines (R3).

C. Workflow

Fig. 1 shows a three-stage pipeline. Stage A, Polygon Ex-
traction: Annual raster masks of mining pixels are converted
to clean vector polygons that outline each detected mining
scar. Stage B, Area, and Image Preprocessing : Polygons
that lie within proximity are first merged to form coherent
mining sites; up-to-date satellite images (e.g., Sentinel-2) are
then retrieved for each site’s bounding box; annual area,
growth rate, and contextual attributes such as municipality and
Indigenous-territory status are computed; finally, the resulting
time-series signatures are clustered to reveal groups of mines
with similar expansion or contraction trajectories. Stage C,
Visual Analysis: The curated set of site polygons, temporal
metrics, satellite thumbnails, and behavioral clusters is loaded
into coordinated interactive views, allowing analysts to filter,
compare, and validate mining dynamics.

IV. MINING-SITE DELINEATION AND CLUSTERING

This section details the preprocessing pipeline that converts
raw raster masks into coherent mining-site objects, enriches
them with spatial context and imagery, and finally groups sites
based on their temporal behavior.

A. Polygon Extraction

We begin by downloading the annual mining classifications
from the MapBiomas Collection 9 using the Google Earth



Fig. 2. MineTracker interface. (A) Area-Growth Explorer – displays the distribution and evolution of mining sites over time, allowing users to interact
through temporal sliders. (B) Cluster View – presents the average time series of identified clusters, illustrating temporal mining patterns. (C) Region-based
Area Timelines – shows two line charts tracking mining area expansion over time, segmented by land category (e.g., Indigenous vs. non-Indigenous) and
municipality. (D) Map View – displays spatial polygons of mining sites overlaid on satellite imagery. (E) Image Gallery – provides yearly satellite images
(2018–2023).

Engine API. Focusing on the state of Roraima (administrative
level 2), we export one .tif mask per year (1985–2023) at a
30 m spatial resolution. Each mask is transformed into vector
geometry with rasterio.features.shapes, producing
one polygon in the World Geodetic System (WGS-84, used in
cartography, geodesy, and satellite navigation, including GPS)
for every contiguous patch of non-zero pixels.

B. Area and Image Processing

Because a single mine often appears as multiple disjoint
fragments, we cluster polygons by spatial proximity. Pairwise
distances, computed with GeoPandas.distance, feed a
DBSCAN [14] model whose density-based logic requires no
prior knowledge of site count or shape. Polygons assigned to
the same cluster are merged with GeoPandas.dissolve,
yielding a single MultiPolygon per mining site.

For each site and year, we calculate area As(t) (km2) with
GeoPandas.area and derive the year-over-year growth
rate. Gaps where As(t) = 0 (no data) are bridged by linear
interpolation limited to internal runs of missing years; growth
is then recomputed from the interpolated series.

To provide up-to-date visual context, we download images
provided by Norway’s International Climate and Forest Ini-
tiative (NICFI) PlanetScope base maps (5m) for the buffered
bounding box of each site. Images are compressed to minimize

latency, then enhanced by (i) brightening vegetation in HSV
color space and (ii) applying a 1.3× global stretch plus CLAHE
(Contrast Limited Adaptive Histogram Equalization, an image
process algorithm for enhancing local contrast) in Lab space
to sharpen local contrast. The resulting thumbnails reveal mine
pits, access roads, and vegetation loss more clearly in the user
interface.

Territorial attributes are attached through spatial overlay
with official municipal and Indigenous-territory boundaries,
enabling subsequent analyses.

C. Time-Series Clustering
Roraima alone contains more than 80 distinct sites — too

many for effortless manual exploration. We, therefore, cluster
sites by the shape of their area trajectories. Dynamic Time
Warping (DTW) distances, which accommodate temporal
shifts and unequal expansion rates, are computed pairwise
between all As(t) series. A second DBSCAN run on the DTW
distance matrix groups mines into patterns such as sustained
growth, steady decline, or intermittent activity. These clusters
serve as high-level entry points for analysts, allowing them to
drill down to individual cases.

V. THE MineTracker SYSTEM

MineTracker is an interactive visual analytics environment
that lets users explore how individual mining sites in the



Brazilian Amazon grow, shrink, or remain stable over time.
The interface (Fig. 2) is organized into five coordinated views.
The remainder of this section provides a detailed description
of these views.

A. Area–Growth Explorer

Borrowing the “temporal scatter” paradigm of Dim-
pVis [15], the Area–Growth Explorer plots every mining site
as a dot whose position evolves frame by frame (T1). The
horizontal axis shows the site area on a logarithmic scale,
while the vertical axis encodes year-to-year percentage change.
Color denotes the municipality in which the site originated
(useful when a large complex straddles multiple jurisdictions).

A timeline slider and Play button control the animation,
allowing analysts to either watch a continuous movie of
expansion and contraction or step through individual years for
closer inspection. Hovering over a dot traces its full trajectory,
with dashed red segments marking values that were linearly
interpolated. Clicking a dot pins that trajectory for comparison
and simultaneously updates the Site Map and Image Gallery,
giving immediate spatial and photographic context for the
chosen mine. This component directly supports task T1, while
task T2 is addressed through interactive legends in the Region-
based Area Timelines (Fig. 2C), which enable filtering of the
displayed sites by municipality or land category.

B. Mining-Group Overview

Following the time-series clustering step (Sec. IV), the re-
sulting groups are summarised in the Mining-Group Overview
(Fig. 2B). Adapting the design of CriPAV [16], the panel
renders, for each cluster, the mean area trajectory as a solid
black curve surrounded by a colored ±1 SD ribbon (T5). A
sidebar lists the cluster label and its site count. Clicking a
cluster acts as a filter across the interface — most notably in
the Area–Growth Explorer, where only the selected group’s
dots remain highlighted — so analysts can quickly compare
archetypal growth patterns. This component supports task T5.

C. Region-based Area Timelines

Spatial trends are conveyed through two coordinated line
charts (Fig. 2C). The lower chart traces, for every year since
1985, the cumulative footprint of mining sites within each
municipality. The lines are color-coded by the municipality,
and the y-axis reports the area in square kilometers. The
upper chart aggregates the same data into two policy-critical
categories — sites inside Indigenous territories versus those
outside — thereby exposing trajectories of (il)legal extraction.
Both charts include interactive legends: clicking a legend item
isolates the corresponding municipality or land category across
all views, enabling analysts to focus on targeted regions while
preserving the broader temporal context. This component
directly addresses task T2.

D. Site Map

The Site Map (Fig. 2D) overlays all mining polygons on an
interactive Leaflet map, coloring each site by its municipality

of origin. When the user clicks a dot in the Area–Growth
Explorer, the map pans and zooms to the corresponding site,
immediately drawing attention to its spatial context. Toggle
switches allow analysts to show or hide auxiliary layers, in-
cluding municipal boundaries, Indigenous-territory limits, the
Amajari Mining Reserve outline [17], and two alternative base
maps: a detailed satellite view and a soft-toned cartographic
style that minimizes clutter and emphasizes selected mines.
This module aligns with the goals of task T3.

E. Image Gallery

The Image Gallery (Fig. 2E) presents a six-frame strip
of annual PlanetScope thumbnails (2018–2023) centered on
the chosen site and buffered to ensure full coverage. These
thumbnails are the contrast-enhanced images described in
Sec. IV.B, which allow users to visually track pit enlargement,
road construction, and vegetation loss. The gallery updates in-
stantly whenever a different site is selected in the Area–Growth
Explorer or Site Map. Support for task T4 is provided by this
component.

F. Implementation Details

MineTracker’s backend is written in Python with Flask.
The front end combines HTML, JavaScript, and D3.js. The
leaflet enables the map view. All code, including reproducible
processing notebooks, is available on GitHub.1 2

VI. USAGE SCENARIOS

We present two author-conducted usage scenarios from the
state of Roraima, aiming to showcase the system’s utility. The
first provides a macroscopic view of mining dynamics; the
second delves into the relationship between policy decisions
and site expansion. The state of Roraima was chosen due to
its manageable and well-characterized mining footprint, along
with documented impacts on Indigenous communities.

A. State-wide Mining Dynamics in Roraima

Dynamic-time-warping clustering (Sec. IV) partitioned Ro-
raima’s 80+ mining sites into six temporal patterns, plus
a small “noise” group (-1). The clusters capture markedly
different life-cycle trajectories:

Cluster 0. Sustained decline (3 sites). Sites shrink steadily
from 1995 to 2023 (Fig. 3A). All lie inside the Amajari
municipality and overlap the Amajari Mining Reserve, es-
tablished by Ministerial Ordinance 143 of 3 Feb 1984 [17].
Reserve regulations appear to have curtailed further expansion
(Fig. 3B–C).

Cluster 1. Late-onset surge (53 sites). Minimal change
occurred before 2010, followed by rapid growth, often on or
near Indigenous land. The political drivers behind this boom
are explored in Case Study 2.

Cluster 2. Reactivation after dormancy (3 sites). A peak in the
early 1990s is followed by quiescence and renewed expansion

1https://github.com/visual-ds/minetracker
2https://visualdslab.com/papers/MineTracker/
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Fig. 3. Temporal dynamics and spatial footprint of Cluster 0 sites. (A)
Mean-area time series (1985–2023) for the three Cluster 0 polygons. (B–C)
Spatial extents of those same polygons in (B) 1995 (their maximum recorded
area) and (C) 2023. Blue polygons denote mining sites; the purple rectangle
delineates the Amajari Mining Reserve boundary (Portaria 143/1984).

after 2015, hinting at abandoned pits being brought back into
production.

Cluster 3. Stepwise regulated growth (4 sites). Two mod-
est growth spurts — one just after 1985, the other around
2000 — are separated by long, stable periods, suggesting con-
trolled, permit-driven expansion.

Cluster 4. Boom–and–bust (14 sites). A pronounced early-
1990s peak collapses to decades of near-zero activity, possi-
bly reflecting the exhaustion of easily accessible deposits or
stricter enforcement.

Cluster 5. Ephemeral artifacts (2 sites). Tiny polygons appear
only in the 1985 snapshot and never again (Fig. 4A–C),
indicating likely classification errors rather than real mines.

Taken together, these patterns underscore the need for tai-
lored monitoring strategies, including continuous enforcement
within protected reserves (Cluster 0), real-time surveillance of
post-2010 expansion fronts (Cluster 1), and periodic quality
control to eliminate spurious detections (Cluster 5).

B. Rise of Illegal Mining Inside Indigenous Lands

We focus here on the sites belonging to Cluster 1. Se-
lecting the Indigenous land category in the Region-based
Area Timelines highlights 51 of the 53 Cluster 1 sites in the
Area–Growth Explorer, confirming that nearly all are located
within Yanomami territory.

Two clear phases emerge (Fig. 5A). Phase 1 – Deregulated
boom (2016–2022). Total mined area and site count (orange
area) rise steeply, coinciding with deregulatory decrees issued
under Presidents Michel Temer (Decree 9.142/2017) [18] and
Jair Bolsonaro (Decree 10.966/2022) [19]. Phase 2 – En-
forcement slowdown (2023). After President Luiz Inácio Lula
da Silva reinstated stricter environmental controls (Decree
11.369/2023) [20], expansion stalls almost everywhere (green
area). By December 2023, only five sites — clustered around
Alto Alegre — continue to grow (Fig. 5B3).
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Fig. 4. Cluster 5 transient sites in 1985. (A) Mean-area time series showing
two sites that only appear in 1985. (B–C) Corresponding spatial footprints of
each site in that year.

Fig. 5B2 spotlights the largest of these mines. Its trajectory
in the Area–Growth Explorer (Fig. 5B2) shows a four-fold area
increase between 2019 and 2023. Corresponding map insets
(Fig. 5C1–C3) visualize the expanding pit and access roads at
those same time points.

The sharp contrast between the boom years and the post-
2022 slowdown highlights how policy enforcement (or its
absence) directly influences mining pressure within protected
Indigenous lands. Without rigorous oversight, illicit extraction
can surge within a few seasons, bringing severe social and
environmental impacts.

VII. DISCUSSION

The case studies demonstrate that MineTracker makes spa-
tiotemporal mining dynamics both visible and interpretable.
By combining coordinated filters with linked maps, timelines,
and imagery, the tool surfaces trends that would be difficult
to spot in raw tabular data.

Results suggest a clear spatial realignment of mining pres-
sure. In non-Indigenous areas, the overall footprint and growth
rate decline, while Yanomami territory shows dramatic expan-
sion during periods of pro-mining policy and an equally sharp
slowdown once stricter enforcement resumes. Such contrasts
underscore the pivotal role of regulatory action.

MineTracker also aids data-quality control. Ephemeral
“mines” that appear in only a single year quickly stand out
as potential misclassifications and can be flagged for further
verification.

Although developed for mining, the workflow generalizes to
any LULC layer where tracking site-level extent and growth
matters — for example, mapping urban sprawl, monitoring
agricultural conversion, or assessing wetland loss. By simply
substituting the input masks and adjusting clustering parame-
ters, analysts can repurpose the system for new domains.

VIII. LIMITATIONS AND FUTURE WORK

Linear interpolation for missing years may oversimplify
temporal dynamics; advanced modeling could better capture



Fig. 5. Proliferation of mining activities on Indigenous lands. (A) Total mining area on Indigenous lands (million km²) from 1985 to 2023, split between
Yanomami territory (red) and other non-indigenous areas (blue). Two distinct growth phases are identified: a period of sharp increase (orange), starting in
2016, followed by a halt in site expansion (green). (B1–B3) Snapshots of the Area–Growth Explorer for 2015, 2022, and 2023, filtered to display sites located
on Indigenous lands. (B2) Highlights the trajectory of a specific site, showing rapid expansion between 2019 and 2023. (B3) Shows sites that continued to
grow in 2023, despite most others halting. (C1–C3) Vectorized mining-polygon footprints overlaid on a street map baselayer for the site highlighted in (B2),
alongside corresponding satellite images, illustrating the progressive enlargement of the excavation over time.

variability. Although connected scatterplots with logarithmic
scales may be less intuitive for non-experts, they remain
suitable for policymakers and environmental organizations, the
system’s target users. Future versions will incorporate data
from the remaining states to enable a more complete analysis.

IX. CONCLUSION

We have introduced MineTracker, an interactive visual an-
alytics environment that reveals the spatiotemporal dynamics
of mining in Roraima, Brazil. By fusing annual MapBiomas
masks, satellite imagery, site-level clustering, and coordinated
visualizations, the system turns otherwise opaque raster stacks
into actionable insight. Analysts can now pinpoint periods of
rapid expansion, verify trends against ground truth imagery,
compare trajectories across administrative and Indigenous
lands, and flag potential classification errors — all within a
single interface. Although demonstrated in mining, the pro-
cessing pipeline and interface design generalize to any land-
use class where the site-level extent and change over time are
key analytical targets.
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