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Abstract—This paper presents a novel framework for explain-
able urban safety perception analysis, utilizing counterfactual
reasoning and providing human-readable interpretations. We
leverage a collection of 3,659 street-level images annotated
with perceptual safety scores. Unlike traditional segmentation
approaches that return only general scene categories, we enrich
the visual data with custom manual annotations of urban physical
disorder elements (e.g., graffiti, broken infrastructure, overhead
cables). Our goal is to classify safety perception from urban
imagery and understand the causal impact of specific visual
elements. To achieve this, we generate counterfactuals by adding
or removing disorder-related elements within the scenes. Rather
than relying on vector-based explanations, we translate these
counterfactual edits into natural language using a large language
model, yielding intuitive insights into how specific elements
influence safety perception. Our findings indicate that a subset
of disorder elements—particularly overhead cables, garbage, and
structural damage—has the greatest impact on the perception of
unsafe streets.

Index Terms—Urban safety perception, Street view images,
Counterfactuals, Large language models, Urban street disorder

I. INTRODUCTION

Perceived safety is a key component of urban perception,
influencing how individuals experience and evaluate public
spaces [1]. Beyond objective measures such as infrastructure
quality or population density, the visual appearance of urban
scenes plays a significant role in shaping subjective impres-
sions of comfort, order, and safety [2], [3]. Elements such
as overhead cables, deteriorating roads, graffiti, and broken
windows contribute to a sense of physical disorder, which
can negatively affect how urban environments are perceived
[4], [5]. Current approaches to predicting urban perception
often rely on semantic segmentation models trained on datasets
such as Cityscapes or ADE20K, which label common urban
elements, including roads, buildings, vehicles, and pedestrians
[6]–[8]. These models have been used to encode images as
visual features for classification and regression tasks, such as
attractiveness (beauty), liveliness, or safety prediction [9], [10].
However, the segmented categories they cover tend to reflect
the city’s structural layout rather than its perceived quality or
condition. As a result, these models overlook disorder-related
visual cues that may play a more significant role in shaping
subjective impressions of the urban environment.

Moreover, several studies have shown that disorder ele-
ments, such as the presence of graffiti, can influence how
people perceive safety, cleanliness, and social order in a given
area [4], [11], [12]. While not inherently criminal, graffiti
is often associated with neglect and social disorganization,
and its visibility has been linked to heightened perceptions of
crime or risk [13], [14]. As a result, detecting and quantifying
graffiti in street-level imagery has become a relevant task for
both urban perception analysis and disorder mapping. Recent
computer vision approaches have attempted to automate graf-
fiti detection; yet, these efforts rarely integrate perception-
based evaluation [15], [16]. Although graffiti is not the only
physical disorder element, it is one of the most studied in
urban perception literature and often serves as a key visual
cue for perceived unsafety.In this work, we extend the existing
perspective by incorporating a broader set of disorder-related
elements through manual pixel-level annotations. The main
contributions of this paper are as follows:

• (i) Urban Street Physical Disorder (UrbanPD4k)
dataset: A curated set of 3,659 street-level images with
manual pixel-level labels identifying 13 types of physical
disorder elements.

• (ii) Key visual elements of safety perception: An analy-
sis and comparison between the presence of non-disorder
elements and disorder elements in urban perception.

• (iii) Counterfactual and Human-readable interpre-
tations: Assess how specific disorder elements impact
safety perception and identify minimal edits needed for
perception shifts.

All appendices, supplemental materials, annotations, and
code will be available here 1.

II. RELATED WORK

A. Urban street disorder elements

Urban street disorder elements have been widely recognized
as influential factors shaping how individuals perceive and
evaluate urban environments. According to the “broken win-
dows theory” [4], visible signs of disorder—such as graffiti,
litter, and damaged infrastructure—can negatively impact per-
ceptions of safety and social stability. Studies in environmental
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psychology and urban design have further shown that people
often interpret such visual cues as indicators of neglect or
decline, influencing feelings of comfort, trust, and aesthetic
appreciation in urban settings [2], [5]. For instance, Nasar
and Jones [17] found that participants rated neighborhoods
with physical disorder significantly lower in perceived safety
and pleasantness. More recent computational approaches have
correlated physical disorder elements (graffiti) with the Human
Development Index (HDI) and distinguished between graffiti
as art versus vandalism in urban contexts [13]–[16]. Despite
their relevance, such features are often missing or underrep-
resented in mainstream urban studies, limiting their utility in
perception-centered modeling and analysis.

B. Urban Perception, visual elements, and explanations

Recent advances in computer vision have enabled the use
of segmentation-based representations to study how people
perceive urban environments. By dividing street view imagery
into object categories—such as buildings, roads, trees, and
vehicles—researchers can extract interpretable visual features
correlated with perception-based labels like safety, wealth,
liveliness, and beauty [6], [7], [10], [18]–[20]. Several works
have leveraged datasets like Cityscapes and ADE20K to
identify links between specific object compositions and low
perceived safety in urban scenes [8], [21], [22]. To further
interpret model predictions, methods such as LIME and SHAP
have been used to highlight the influence of visual elements on
perception outcomes [23]–[28]. However, these efforts often
rely on general-purpose segmentation datasets that lack cat-
egories related to physical disorders, potentially overlooking
subtle yet impactful features—such as damaged infrastructure
or overhead cables—that strongly affect how urban scenes are
perceived.
Position of the present work. Incorporating 13 newly
identified urban physical disorder elements into images and
using counterfactuals to evaluate their impact on safe and
unsafe perceptions offers a promising direction for more
accurate and explainable perception predictions. Additionally,
for further interpretation, we also incorporate large language
models (LLMs) to generate human-readable explanations from
counterfactual results, enhancing and enabling a higher-level
understanding of how specific visual elements influence safety
perception.

III. METHODOLOGY

Our methodology comprises four stages: (i) Image seg-
mentation and manual annotations, (ii) Quantifying Urban
perception, (iii) CounterFactual explanations, and (iv) Human-
readable interpretations.

A. Image segmentation and manual annotations

We begin with 3,659 street-level scenes from Rio de
Janeiro, each paired with a safety perception score provided
by the PlacePulse 2.0 survey [9]. To extract structured visual
information, we applied the OneFormer model pre-trained
on ADE20K [29], which segments each image into 150

semantic classes. For interpretability, we regrouped these into
nine higher-level visual element categories: Sky, Human,
Construction, Floor, Vegetation, City elements, Terrain
vehicles, Body of water, and Other, which includes all
remaining classes and is excluded from the analysis. Note
that some categories—such as water-related or specific con-
struction elements—were not present in the selected imagery
and were therefore not included in subsequent analyses (e.g.,
no occurrences of sea or waterfall). Table I summarizes the
regrouped categories. For more details about the Other group,
see Appendix A.

TABLE I
ADE20K CLASSES AND NEW GROUP-CATEGORIES (VISUAL ELEMENTS)

Category # classes class name
Construction 14 wall, building, ceiling, house

fence, column, skyscraper, bridge.
bar, shack, tower, stadium

fountain, outside door
Floor 7 floor, road, sidewalk

ground, sand, path, land
Vegetation 6 tree, grass, plant, field

flower, palm
Terrain vehicle 6 car, bus, truck, van

motorcycle, bicycle
Body water 5 water, sea, river, waterfall, lake
City elements 4 signboard, streetlight

pole, stoplight
Sky 1 sky
Human 1 person
Other 106 not included

In parallel, and drawing from psychological and sociological
research on urban environments [4], [30] as well as Brazilian
studies of urban disorder [13], [15], we identified 13 visual
indicators of street disorder—such as overhead cables, graffiti,
broken pavement, trash, the presence of homeless individuals,
and police vehicles—that reflect both physical decay and
social vulnerability. Figure 2 illustrates the process of adding
manual annotations, resulting in new masks for the visual
elements.

Fig. 1. An example of merging ADE20K segmentation masks and disorder
elements manual annotations.

B. Quantifying urban perception
MIT PlacePulse 2.0 dataset comprises approximately 1.22

million pairwise comparisons across 111,390 images from 56



cities, along with image IDs, geographic coordinates, and
comparison outcomes. To preprocess the data and assign
perceptual scores to each image, we apply the “strength of
schedule” algorithm [31], which estimates a Q-score based on
each image’s win and loss rates using the following equation:
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In Equations 1 to 3, wk
i , dki , and lki denote the number of

times image i was selected as the winner, marked as equal, or
marked as the loser in comparisons, respectively. The terms
n1 and n2 represent the number of wins and losses for image
i. The variable Award refers to the average win rate against
images that i defeated, while Penalty represents the average
loss rate against images that defeated i. The final Q-score is
scaled to a range from 0 to 10, where lower values indicate
perceptions of low safety and higher values correspond to a
high perceived safety [5]. In this study, we focus on images
from the city of Rio de Janeiro, which were first scored for
perceived safety and subsequently annotated with physical
disorder elements.

C. Counterfactuals explanations
Traditional predictive models can highlight correlations be-

tween visual features and perception scores, but often lack
transparency and actionable insights [20], [26]. Counterfactual
explanations address this gap by revealing how minimal visual
changes—such as removing disorder elements (e.g., graffiti
or overhead cables), or adding other visual elements (e.g,
vegetation, construction)—could alter the safety perception.

More formally, we can define it as an optimization problem
where the goal is to find a minimal change to the input
image x ∈ X (through visual elements) that alters the model’s
prediction of perceived safety f : X → Y , from the original
outcome y = f(x) to a desired outcome y′, using a x′ ∈ X
counterfactual input, subject to a cost function that measures
the distance or difference between x and x′ called C(x, x′),
and F a set of feasible edits (e.g., adding/removing specific
elements). Here, we perform two experiments, counterfactuals
based on the presence or absence of the element and the
variation in element pixel ratios.

1) Binary presence/absence: The images are represented by
binary visual feature vectors x = x1, x2, . . . , xn, where each
xi ∈ 0, 1 indicates the presence of a visual element (either
present (1) or absent (0)). The goal is to flip as few elements
xi as possible to reach a target prediction:

x′ = arg min
x′∈F

n∑
i=1

|xi − x′
i| subject to f(x′) ≥ τ (4)

Where τ is a threshold safety score (e.g., to be classified as
“safe”).

2) Pixel ratios: The images are represented as pixel ratio
vectors x = x1, x2, . . . , xn where xi ∈ R | 0 ≤ x ≤ 100. The
goal is to find the closest vector to change the prediction (e.g.,
from unsafe to safe):

x′ = arg min
x′∈F

C(x, x′) + λ · L(f(x′), y′) (5)

Where λ is the trade-off coefficient.

D. Human-readable interpretations

Once x′ is obtained, the counterfactual difference ∆x =
x′ − x is mapped to textual statements:

Interpretation = LLM(∆x) (6)

Where LLM is a large language model that converts
added/removed elements into natural language (e.g., “Remov-
ing graffiti increased perceived safety”).

1) Binary presence/absence: Following Equation 4, the
difference ∆xi = x′

i − xi can be ∆xi = 1 if the element
was added in the counterfactual, ∆xi = −1 if the element
was removed in the counterfactual, or ∆xi = 0 if there is no
change. Equation 6 can be rewritten as:

Explanation = LLM ({i | ∆xi = 1}, {j | ∆xj = −1}) (7)

Where {i | ∆xi = 1} is the set of visual elements that were
added, and {j | ∆xj = −1} is the set of visual elements that
were removed.

2) Pixel ratios: Following Equation 5, the difference
∆xi = x′

i − xi can be a real number between -1 and 1.
Equation 6 can be rewritten as:

Explanation = LLM ({i | ∆xi > ϵ} , {j | ∆xj < −ϵ}) (8)

Where ϵ is a threshold to ignore small fluctuations, {i | ∆xi >
ϵ} is the set of visual elements that had a noticeable increase
in pixel area in the counterfactual image (e.g., tree coverage
increased from 10% to 25%), and {j | ∆xj < −ϵ} is the set
of visual elements that had a noticeable decrease in pixel area
(e.g., graffiti coverage dropped from 15% to 2%).

IV. EXPERIMENTS & DISCUSSIONS

Here, we discuss our results and insights obtained from
the experiments conducted on street-level images from Rio
de Janeiro. We evaluate how urban physical disorder (UDP)
elements influence perceived safety.

A. Urban Physical Disorder (UrbanPD4k) dataset

The UrbanPD4k dataset includes comprehensive manual an-
notations to support a fine-grained analysis of urban elements
in street view imagery. Figure 2 summarizes the annotation
statistics through three complementary visualizations. Subfig-
ure (a) presents samples of the generated mask annotations
across categories, highlighting the level of human involvement
in the labeling process. Subfigure (b) shows the presence of
each annotated element, providing insights into how frequently
different components of urban physical disorder—such as
cables, trash cans, garbage, and graffiti—appear across the
dataset. Finally, subfigure (c) illustrates the pixel coverage of



    (a)                                                (b)                                         (c)

   Manual annotations                                                   Elements presence                               Elements pixel coverage

Fig. 2. Overview of the annotation statistics for the UrbanPD4k dataset. (a) Pixel-level annotation mask samples (b) Presence of annotated elements, indicating
the frequency of each class in the dataset. (c) Pixel coverage of elements, showing the proportion of the image area occupied by each annotated class. Together,
these visualizations highlight the diversity and balance of the annotated content within UrbanPD4k.

these elements, capturing their relative spatial dominance in
the scenes. Together, these results reveal that while certain
large-scale classes (e.g., buildings and roads) occupy most of
the pixel area, smaller but semantically important elements
(e.g., damaged walls, broken windows, homeless, and dete-
riorated traffic signs) appear less frequently but contribute
significantly to the visual and functional diversity of the urban
environment.

B. Physical Disorder Impacts on Urban Perception

We conduct extensive experiments to investigate the follow-
ing Research Questions (RQ):

• RQ1: Are disorder-related elements more predictive of
low safety than general scene features?

• RQ2: What are the limitations of using the binary pres-
ence or absence of elements in subjective tasks, such as
safety perception?

• RQ3: Which visual elements have the strongest causal
influence on perceived safety and unsafety in urban
environments?

1) Experimental settings: For the LLM experiments, we
do not compare outputs from different LLMs, as previous
work has already analyzed this and found that the GPT-4
series performs best for generating explanations [32], [33].
Therefore, we use OpenAI’s GPT-4o-mini to create diverse
and descriptive, human-readable textual interpretations of the
counterfactual generations, with a focus on features rele-
vant to urban perception. For counterfactual generations, we
use Diverse Counterfactual Explanations (DiCE) [34] with a
TensorFlow backend configuration. For all experiments, the
dataset is split into 75% for training and validation and 25%
for testing. Experiments are conducted on an NVIDIA RTX
3090 GPU with limited VRAM and half precision.

2) RQ1: Model performance comparison: We conduct
experiments under two settings: using binary feature vectors
and using pixel ratio values. Additionally, we compare the
performance of four Random Forest classifiers trained with
different feature configurations: (i) feature vectors composed
of all ADE20K segmentation objects; (ii) feature vectors
based on our new grouped categories; (iii) feature vectors
combining ADE20K objects with our manually annotated
disorder elements; and (iv) feature vectors combining our
new grouped categories with the disorder annotations. For the
labeling process, see Appendix C.

Table II reports the classification results. We observe
that grouping visual features and incorporating disorder
elements (as in the best model) significantly improves
the model’s ability to identify unsafe and safe streets.
In particular, adding disorder elements boosts classification
performance by 2–5% and 5–7% for ADE20K + disorder
elements in binary and pixel ratios, respectively, and by 2–3%
and 5–7% for Visual + disorder elements in binary and pixel
ratios, respectively. These findings demonstrate that including
relevant cues—such as urban disorder—provides a more infor-
mative representation of scene composition, thereby enhancing
the model’s ability to infer unsafe scenes. Additional details
on the feature importance of each object for both binary and
pixel ratio features are provided in Appendix E.

3) RQ2: SHAP explanations: We applied SHAP explana-
tions [35] to two different feature representations of urban
objects extracted via semantic segmentation: binary pres-
ence/absence and pixel ratio (i.e., the proportion of the image
area). In the pixel ratio representation, features are continuous
values indicating the percentage of the image occupied by each
object class. This allows SHAP to compute contributions for
all object classes, regardless of whether they dominate the



TABLE II
CLASSIFICATION RESULTS USING BINARY AND PIXEL RATIOS CONFIGURATIONS

Setting Categories Perception Metrics
Precision Recall F-1

ADE20K (150 classes) not safe 0.59 0.65 0.62
safe 0.60 0.55 0.57

AE20K+Disorder (163 classes) not safe 0.64 0.65 0.65
safe 0.67 0.60 0.63

Visual elements (8 groups-classes) not safe 0.52 0.42 0.46
Binary values safe 0.51 0.61 0.55

Visual elements+Disorder (22 classes) not safe 0.66 0.71 0.67
safe 0.65 0.66 0.66

ADE20K (150 classes) not safe 0.67 0.73 0.69
safe 0.71 0.63 0.67

AE20K+Disorder (163 classes) not safe 0.70 0.76 0.73
safe 0.73 0.68 0.70

Visual elements (8 groups-classes) not safe 0.69 0.72 0.70
Pixel ratios safe 0.70 0.64 0.66

Visual elements+Disorder (22 classes) not safe 0.72 0.77 0.75
safe 0.75 0.69 0.72

image or are only marginally present. Appendix F-Figure 3
provides richer insights, capturing both positive and negative
contributions of urban elements. Notably, disorder-related ele-
ments (e.g., trash, graffiti, broken sidewalks) are often assigned
negative SHAP values, reflecting their association with lower
perceived safety. In contrast, well-maintained or green ele-
ments typically contribute positively to the environment. Con-
versely, in the binary case, each object class is represented as a
binary indicator (1 if present, 0 if absent). SHAP explanations
under this setting only assign meaningful values to the objects
present in the image. In contrast, absent objects receive near-
zero attribution, as the model has no variation to assess their
marginal contribution. As a result, SHAP outputs in this case
are limited to a sparse subset of objects, which may hinder full
interpretability. On the other hand, using pixel ratios allows
us to gain deeper insights into objects. In both cases, SHAP
explanations suggest that disorder-related features are strongly
associated with perceptions of unsafety, with physical disorder
elements having a negative impact on perceptions of safety.

4) RQ3: Counterfactuals explanations: From the SHAP
results, we know that disorder elements are more strongly
associated with “unsafe” predictions. However, we do not
fully understand their causal influence. To better understand
how specific visual elements influence perceived urban safety
and to determine which elements can shift the perception
of a street scene from “unsafe” to “safe” (or vice versa),
we employ counterfactual explanations. The primary goal is
to identify which features—whether represented as binary
presence/absence or pixel ratio values—have the strongest
causal impact on classification outcomes.

To quantify the causal importance of each feature, we
generate 100 counterfactuals to change “unsafe” to “safe”
samples using the DiceML library. We configure for 0 and
1 values to change in the binary case, and [0−1] range values
for pixel ratios. Appendix G-Figure 4 presents the number of

feature changes per sample between the binary and pixel-ratio
scenarios across the 100 generated counterfactuals for each
sample. Features that are frequently modified are considered
more causally influential, as they are often involved in the
minimal transformations required to alter the model’s decision.
We observe that disorder-related elements, such as overhead
cables, graffiti, damaged walls, trash cans, and visual elements
like vegetation (plants, trees), people, and cars, exhibit the
highest number of variations. This result suggests that changes
in disorder-related factors are essential to determine whether
a scene is “unsafe” or “safe”.

C. Human-Readable Interpretations

To enhance the interpretability of safety perception predic-
tions and counterfactual suggestions, we employed a LLM
to convert counterfactuals into natural language explanations.
These edits were derived by identifying the semantic ele-
ments that most strongly influenced the model’s predictions.
Each counterfactual instance for interpretation was selected
by analyzing object categories whose pixel ratios or binary
presence significantly impacted the prediction outcome while
remaining as close as possible to the original vector sample.
The resulting vectors were then mapped to textual explanations
via prompting. Following the recommendations of [32], [36],
our prompt was structured to generate explanations in plain
language for both cases. See Appendix D for prompt details.

We applied the prompt to the closest and least-modified
counterfactual pair for each sample, aiming to obtain a natural
language explanation of how the relative increase or addition,
or decrease or removal, of certain visual elements may influ-
ence the perception of safety. Additionally, we define ∆ safety
as the difference in the probability of being classified as “safe”
after applying the counterfactual. We select unsafe samples
with both high and low prediction probabilities, corresponding
to images that received a low safety score (between zero



TABLE III
LLM HUMAN-READABLE INTERPRETATIONS FOR COUNTERFACTUALS

Image

∆ safety probability 0.45 0.25 0.04
Objects Removed graffiti, garbage, damaged sidewalk overhead cables, damaged road garbage bags
Objects Added trees, walls, fences Trees, grass tree, grass, road
LLM interpretation It’s better to remove graffiti from walls,

repair brick walls, and avoid overhead
cables

The overhead cables should be re-
moved, and adding grass and trees
along the road will help increase peo-
ple’s sense of safety.

This street is already in good condition,
but by incorporating more greenery and
eliminating garbage bags, it could be
improved even further.

and four). Table III shows the results of applying LLM-
generated, human-readable interpretations for counterfactual
explanations in both cases: pixel ratios (proportional coverage)
and binary (presence/absence). We note that for the high-score
(safe) image, changes are minimal; in contrast, for the middle-
and low-score images, the changes (additions/removals of
elements) are more significant, highlighting how visual content
adjustments contribute more noticeably to perceived safety in
less safe scenes.

V. LIMITATIONS

A. Subjectivity of Safety Scores

The safety scores used in our model are derived from
crowdsourced perceptual judgments via the PlacePulse 2.0
platform. These scores reflect general public opinion rather
than objective safety metrics or the views of local residents.
The subjectivity inherent in perception data introduces noise
and variability, which may affect model predictions and in-
terpretations. A way to solve this is by incorporating local
surveys, crime data, or demographic context to triangulate
perception with lived experience and ground truth.

B. Manual Annotation Scalability

Our analysis benefits from manually annotated physical dis-
order elements, which offer more targeted insights than general
segmentation categories. However, the annotation process is
time-consuming and subject to annotator bias. Scaling this
approach to other cities or larger image sets would require
significant effort or the adoption of semi-supervised labeling
techniques.

VI. ETHICAL IMPLICATIONS

The dataset used in this study consists of images obtained
through the Google Street View API, which provides publicly
accessible imagery under Google’s Terms of Service. All usage
of this data complies with the corresponding licensing and
attribution requirements. Google Street View applies automatic

blurring to faces and license plates, and we additionally
verified that no unblurred identifiable elements were present in
the images selected for annotation. Since the images originate
from a platform specifically intended for public use and do
not contain identifiable personal data, informed consent from
individuals was not required. All manual annotations created
for this study were limited exclusively to non-personal objects
of interest relevant to the research. These annotations do
not involve, derive, or expose any personal information. The
UrbanDP4k dataset, including urban physical disorder annota-
tions and geographic coordinates (latitude and longitude), will
be available here 2.

VII. CONCLUSIONS

This study introduces a novel approach to analyzing urban
safety perceptions by combining semantic segmentation, man-
ual annotation, counterfactual reasoning, and natural language
explanations using LLMs. By analyzing 3,659 street-level
scenes from Rio de Janeiro, we demonstrate how specific
visual elements (e.g., graffiti, broken infrastructure, and over-
head cables) contribute to perceptions of unsafety. We compare
two encoding methods—binary presence/absence and pixel
ratios—to assess their impact on safety judgments. Counter-
factual analysis reveals that while both approaches identify
influential elements, pixel ratios offer a more nuanced under-
standing of how subtle visual changes affect perception. By
translating these insights into human-readable explanations,
the study provides actionable guidance for urban planners
and policymakers, highlighting the importance of considering
physical disorder in urban safety assessments.

Finally, by translating visual edits into human-readable lan-
guage, these explanations provide urban planners, policymak-
ers, and designers with interpretable, scenario-based insights
to support targeted interventions. These results highlight the
value of integrating visual and textual reasoning for actionable

2https://visualdslab.com/papers/UrbanPD4k

https://visualdslab.com/papers/UrbanPD4k


urban analytics, showing that physical disorder—often over-
looked in general-purpose segmentation—carries strong per-
ceptual signals and can significantly shape safety perception.
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APPENDIX

A. Other Grouped Categories

TABLE I
ADE20K CLASSES AND GROUPS NOT INCLUDED

Other Categories # classes class name
Indoor elements 73 bed, cabinet, door, table

curtain, fan, crt screen, plate
monitor, shower, ...

Outdoor elements 11 windowpane, grandstand, runway
screen door, bench, stairway

awning, poster, tent
swimming pool, steps

Nature elements 3 mountain, rock, hill
Clothes elements 2 clothes, bag
Sea vehicle 2 boat, ship
Sea vehicle related 1 pier
Air vehicle 1 airplane
Terrain vehicle related 1 radiator
Animal 1 animal
Miscellaneous 11 blind, stage, basket

food, trade, flowerpot, sculpture
bulletin, glass, clock, flag

B. Images Comparisons to Scores

left right winner

draw

left

right

.

.

.

.

.

.

.

.

.

right

left

(     ,9.55)
(     ,7.29)
     …
(     ,5.01)
     …
(     ,2.16)
(     ,0.35)

Fig. 1. An example of processing comparisons to perceptual scores using the
“strengh of Schedule” algorithm.

C. Labeling process

We use the score Qk
i calculated in Equation 3. We define

class labels using a threshold based on the mean and standard
deviation, using a δ = 0.8:

yi,k =

{
1 if Qk

i > µk + δσk%

0 if Qk
i < µk − δσk%

(1)

D. Prompt

[System]: You are a person evaluating
street images based on their
visual appearance, tasked with
improving street safety perception.

[User]: Imagine describing how a street
scene might feel with visible changes
in certain elements.
We want you to describe which elements
should be removed/reduced and which
should be added/increased to improve
the safety perception.

[System]: These changes are derived
from comparing two representations
of the same scene:
original values and counterfactual values.

[User]: The counterfactuals give us
the following insights:

[Added or Increased Elements]:
{\\n.join(added) if added else ’None’}

[Removed or Decreased Elements]:
{\\n.join(removed) if removed else ’None’}
## End of Python code

Based on these changes, please write a
concise explanation (max 50 words)
describing how these changes might
affect your sense of safety.



E. Feature importance

Figure 2 presents the computed feature importance. The results clearly indicate that the physical disorder elements play a
significant role in shaping the model’s predictions. The consistent importance of disorder-related elements suggests that they
are especially informative in identifying environmental irregularities or anomalies that may signal unsafe conditions.
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Fig. 2. Feature importance of the top 15 elements in all models evaluated.



F. SHAP explanations
Figure 3 shows the SHAP explanations for both methods—pixel ratios (continuous values) and binary presence/absence

values—indicating that pixel ratios provide more information and have a greater influence on model inferences. In contrast,
binary values have a negligible impact and only on a subset of the features.
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Fig. 3. SHAP values for both: binary presence and pixel ratios values.



G. Counterfactuals generations
Figure 4 presents counterfactual generations for all unsafe samples. We compare binary and pixel ratio cases by measuring

how often each object changes its value—presence or absence in the binary case, and percentage change in the pixel ratio
case.
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Fig. 4. Measure influence of elements by generating 100 Counterfactuals generations.
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