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Overview

Generating explanations for GNN predictions usually implies back-propagating through the
GNN or repeatedly learning local surrogate models.

Can we use less compute and explain a simple global GNN surrogate instead?

« We propose Distill n” Explain (DnX) a new framework for GNN explanations that hinges
on explaining a simple surrogate model obtained through knowledge distillation:

- DnX comprises two steps: knowledge distillation and explanation extraction.

- We provide theoretical bounds on the quality of explanations based on these surrogates;

= The results achieved show that our methods outperform the prior art while running
orders of magnitude faster.

DnX: Distill n’ Explain

Knowledge distillation

In this step, we use a linear GNN WU to approximate the predictions from the GNN ® we want to explain, for
that we minimize the Kullback-Leibler divergence KL between the predictions of ® and Wg. Let 5}@(‘%) and

?;;@) denote the class predictions for node 7 from the Wg and ® models, respectively:
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Explanation extraction

To obtain an explanation to a given prediction Y;%), we want to identify a subgraph of G containing the nodes
that influence the most that prediction. We denote an explanation & as an n-dimensional vector of importance
scores. We introduce two strategies to compute &£.

1. DnX: Optimizing for £&. We can formulate the problem of finding the explanation £ by treating it as a
> (Ve)
and

vector of 0-1 weights, and minimizing the squared Lo norm between the logits associated with Y,
those from the graph with node features masked by &:

min || Ardiag(£) X0 — AV X6 |2, 2
o, | Aj diag(€) i X0 |3 (2)

where EZL denotes the i-th row of the matrix AL, But this formulation in 2 admits the trivial solution

E=11,1,...,1]. To circumvent the issue and simultaneously avoid binary optimization, we replace the
search space {0,1}" by the (n — 1)-simplex A ={r e R": ) .r; =1,V;r; > 0}:
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2. FastDnX: Finding £ via linear decomposition. Let Z; denote the logit vector associated with the

prediction SA/Z-@@). Due to the linear nature of ¥, we can decompose Z; into a sum of n terms, one for each
node in V' (plus the bias):

ALX10+ ALX0+ . + AL X0+ b= Z;. (4)

Therefore, we can measure the contribution of each node to the prediction as its scalar projection onto
Z; — b

Ej = AjX;0(Z; — b)T (5)

Analysis

Definition (Faithfulness). Given a set IC of perturbations of G, an explanation &, is faithful to a model f if
1
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where G/, is a possibly perturbed version of Gy, t is a function that applies the explanation &, to the graph G/,
and o is a small constant.

Lemma 1 (Unfaithfulness with respect to ). Given a node u and a set KC of perturbations, the unfaithfulness

of the explanation &, with respect to the prediction YZE\D@) of node u is bounded as follows:
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Theorem 1 (Unfaithfulness with respect to ®). Under the same assumptions of Lema 1 that provides an upper
bound on the unfaithtulness ot &, with respect to the surrogate model W and assuming the Lo distillation
error is bounded by «, the unfaithfulness of the explanation &, for the original model ®’s node u prediction is
bounded as follows:
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Results

Table 1. Performance of node-level explanations for real-world datasets. For this dataset, we use average
precision (AP) as an evaluation metric. Blue and Green numbers denote the best and second-best methods,
respectively. DnX significantly outperforms the baselines (GNN-, PG-, and PGM-Explainers).

Bitcoin-Alpha Bitcoin-OTC

Model Explainer |top 3 top 4 top 5 top 3 top 4 top 5

GNNEx [80.1 749 709|824 79.6 70.6
qey POEx 8L5 781 695 785 745 674
(3 hop) POGMEx | 67.0 598 51.8 | 63.0 55.2 47.4

DnX 95.8 91.9 87.9 194.8 91.4 86.3
FastDnX [89.8 85.2 80.2 |88.0 83.0 78.8
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Table 2. Performance (average accuracy) of explanation methods for node-level explanations in the synthetic
datasets. Blue and Green numbers denote the best and second-best methods, respectively. Overall, FastDnX
is the best-performing method for all network architectures (GCN, ARMA, GATED, and GIN) on all datasets
but Tree-Cycles and Tree-Grids.

Model  Explainer BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle
GNNExplainer 775+ 1.2 04.7 + 1.0 89.2+20 77r24+90 71.1+£1.0 73.3+x3.0
PGExplainer 95.0 = 1.1 70.6 £ 2.0 86.2+9.0 92.4-+5.2 76.7+t1.2 982+ 3.0

GCN PGMExplainer 97.9 == 0.9 92.2 +0.2 88.6+0.9 94.1 = 0.8 86.8 2.0 97.5+1.5
DnX 97. 7+ 0.2 94.6 - 0.1 89.8+ 0.1 &83.3+04 &0.2=+0.1 99.6 +0.1
FastDnX 99.6 += NA 95.4 +=NA 93.9 = NA 87.34+NA 85.0 1+ NA 99.8 += NA
GNNExplainer 80.9 1.2 78.5+1.0 7.3 +1.3 77710 79.3+1.1 &4.3+1.3
PGExplainer 91.4 += 0.1 72.1 0.1 83.8+1.0 92.6 2.1 85.1+0.1 97.0x1.1

ARMA PGMExplainer 99.3 =+ 0.2 67.54 0.8 86.8 0.3 95.0 =0.2 90.6 = 0.3 99.7 = 0.1
DnX 98.1 = 0.2 92.7 0.2 90.8+-0.1 8.54+04 79.6=+0.3 96.94+0.2
FastDnX 100.0 =NA 95.24+NA 94.7+ NA 87.14+NA 87.7+NA 99.9 + NA
GNNExplainer 79.7+ 1.0 068.8 = 1.0 91.4+3.0 8.24+20 73.2=+4.0 70.0+2.0
PGExplainer 96.1 +=4.1 70.9 + 3.0 90.7+1.0 91.7 7.0 &83.7+t1.5 98.7T 0.1

GATED PGMExplainer 98.6 4+ 0.1 69.4 4+ 0.5 80.8+0.3 94.1 =0.2 90.1 = 0.2 98.3 = 0.2
DnX 98.3 += 0.1 91.1 = 0.1 90.8 0.1 &85.01+0.3 82.1+0.2 98.0+0.2
FastDnX 99.6 + NA 93.5 = NA 94.0=NA 76.84+ NA 86.8 +=NA 098.0+ NA
PGMExplainer 60.2 4= 0.2 4.5+ 0.3 08.4+0.2 89.3 0.2 8.0-0.5 55.7+04

GIN' pix 99.0 4+ 0.1 94.0+0.2 91.1+0.1 84.1+0.3 77.3+0.2 95.3 + 0.2
FastDnX 99.6 = NA 94.7 = NA 93.9+NA 7524+ NA 76.54+NA 99.1 = NA

Time comparison.

To demonstrate the computational efficiency of DnX/FastDnX, Figure 1 shows the time each method takes to
explain a single GCN prediction. For a fair comparison, we also take into account the distillation step in

DnX/FastDnX.
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Figure 1. Time comparison. The bar plots show the average time each method takes to explain a prediction

from GCN.

Are benchmarks too simple?

Given that DnX/FastDnX often achieve remarkable performance by explaining simple surrogates, a natural
questions arises: are these popular benchmarks for GNN explanations too simple? Since these benchmarks rely
on model-agnostic ground-truth explanations, we now investigate inductive biases behind these explanations,
and show that they can be easily captured.
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Figure 2. Degree distribution of motif and base nodes.

What you’'ll also find in the manuscript

» Distillation results;
» Results for edge-level predictions:

» Experiments evaluating the fidelity on real datasets:

= [ixperiments on additional datasets.
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