
Distill n’ Explain: explaining graph neural networks using
simple surrogates

Tamara Pereira1, Erik Nascimento1, Lucas E. Resck2, Diego Mesquita2, Amauri Souza1,3

1Federal Institute of Ceará 2Getulio Vargas Foundation 3Aalto university

Overview

Generating explanations for GNN predictions usually implies back-propagating through the
GNN or repeatedly learning local surrogate models.

Can we use less compute and explain a simple global GNN surrogate instead?

We propose Distill n’ Explain (DnX) a new framework for GNN explanations that hinges
on explaining a simple surrogate model obtained through knowledge distillation;
DnX comprises two steps: knowledge distillation and explanation extraction.
We provide theoretical bounds on the quality of explanations based on these surrogates;
The results achieved show that our methods outperform the prior art while running
orders of magnitude faster.

DnX: Distill n’ Explain

Knowledge distillation

In this step, we use a linear GNN Ψ to approximate the predictions from the GNN Φ we want to explain, for
that we minimize the Kullback-Leibler divergence KL between the predictions of Φ and ΨΘ. Let Ŷ

(ΨΘ)
i and

Ŷ
(Φ)
i denote the class predictions for node i from the ΨΘ and Φ models, respectively:

min
Θ

KL
(

Ŷ (Φ), Ŷ (ΨΘ)
)

:=
∑
i∈V

∑
c

Ŷ
(Φ)
ic log

Ŷ
(Φ)
ic

Ŷ
(ΨΘ)
ic

 . (1)

Explanation extraction

To obtain an explanation to a given prediction Ŷ
(Ψθ)
i , we want to identify a subgraph of G containing the nodes

that influence the most that prediction. We denote an explanation E as an n-dimensional vector of importance
scores. We introduce two strategies to compute E .

1. DnX: Optimizing for E . We can formulate the problem of finding the explanation E by treating it as a
vector of 0-1 weights, and minimizing the squared L2 norm between the logits associated with Ŷ

(ΨΘ)
i and

those from the graph with node features masked by E :

min
E∈{0,1}n

‖ ÃL
i diag(E)XΘ − ÃL

i XΘ ‖2
2, (2)

where ÃL
i denotes the i-th row of the matrix ÃL. But this formulation in 2 admits the trivial solution

E = [1, 1, . . . , 1]. To circumvent the issue and simultaneously avoid binary optimization, we replace the
search space {0, 1}n by the (n − 1)-simplex ∆ = {r ∈ Rn :

∑
i ri = 1, ∀iri ≥ 0}:

min
E∈∆

∥∥∥ÃL
i (diag(E) − In) XΘ

∥∥∥2

2
. (3)

2. FastDnX: Finding E via linear decomposition. Let Zi denote the logit vector associated with the
prediction Ŷ

(ΨΘ)
i . Due to the linear nature of Ψ, we can decompose Zi into a sum of n terms, one for each

node in V (plus the bias):

ÃL
i1X1Θ + ÃL

i2X2Θ + . . . + ÃL
inXnΘ + b = Zi. (4)

Therefore, we can measure the contribution of each node to the prediction as its scalar projection onto
Zi − b:

Ej := ÃL
ijXjΘ(Zi − b)ᵀ (5)

Analysis

Definition (Faithfulness). Given a set K of perturbations of Gu, an explanation Eu is faithful to a model f if
1

|K| + 1
∑

G′
u∈K∪{Gu}

∥∥f (G′
u) − f (t(G′

u, Eu))
∥∥

2 ≤ δ,

where G′
u is a possibly perturbed version of Gu, t is a function that applies the explanation Eu to the graph G′

u,
and δ is a small constant.

Lemma 1 (Unfaithfulness with respect to Ψ). Given a node u and a set K of perturbations, the unfaithfulness
of the explanation Eu with respect to the prediction Y

(ΨΘ)
u of node u is bounded as follows:

1
|K| + 1

∑
G′

u∈
K∪{Gu}

∥∥Ψ(G′
u) − Ψ(t(G′

u, Eu))
∥∥

2 ≤ γ

∥∥∥∥∆
Eu

ÃL
u

∥∥∥∥
2

.

Theorem 1 (Unfaithfulness with respect to Φ). Under the same assumptions of Lema 1 that provides an upper
bound on the unfaithfulness of Eu with respect to the surrogate model Ψ and assuming the L2 distillation
error is bounded by α, the unfaithfulness of the explanation Eu for the original model Φ’s node u prediction is
bounded as follows:

1
|K| + 1

∑
G′

u∈
K∪{Gu}

∥∥Φ(G′
u) − Φ(t(G′

u, Eu))
∥∥

2 ≤ γ

∥∥∥∥∆
Eu

ÃL
u

∥∥∥∥
2

+ 2α.

Results

Table 1. Performance of node-level explanations for real-world datasets. For this dataset, we use average
precision (AP) as an evaluation metric. Blue and Green numbers denote the best and second-best methods,
respectively. DnX significantly outperforms the baselines (GNN-, PG-, and PGM-Explainers).

Bitcoin-Alpha Bitcoin-OTC

Model Explainer top 3 top 4 top 5 top 3 top 4 top 5

GCN
(3-hop)

GNNEx 80.1 74.9 70.9 82.4 79.6 70.6
PGEx 81.5 78.1 69.5 78.5 74.5 67.4
PGMEx 67.0 59.8 51.8 63.0 55.2 47.4
DnX 95.8 91.9 87.9 94.8 91.4 86.3
FastDnX 89.8 85.2 80.2 88.0 83.0 78.8

Table 2. Performance (average accuracy) of explanation methods for node-level explanations in the synthetic
datasets. Blue and Green numbers denote the best and second-best methods, respectively. Overall, FastDnX
is the best-performing method for all network architectures (GCN, ARMA, GATED, and GIN) on all datasets
but Tree-Cycles and Tree-Grids.
Model Explainer BA-House BA-Community BA-Grids Tree-Cycles Tree-Grids BA-Bottle

GCN

GNNExplainer 77.5 ± 1.2 64.7 ± 1.0 89.2 ± 2.0 77.2 ± 9.0 71.1 ± 1.0 73.3 ± 3.0
PGExplainer 95.0 ± 1.1 70.6 ± 2.0 86.2 ± 9.0 92.4 ± 5.2 76.7 ± 1.2 98.2 ± 3.0
PGMExplainer 97.9 ± 0.9 92.2 ± 0.2 88.6 ± 0.9 94.1 ± 0.8 86.8 ± 2.0 97.5 ± 1.5
DnX 97.7 ± 0.2 94.6 ± 0.1 89.8 ± 0.1 83.3 ± 0.4 80.2 ± 0.1 99.6 ± 0.1
FastDnX 99.6 ± NA 95.4 ± NA 93.9 ± NA 87.3 ± NA 85.0 ± NA 99.8 ± NA

ARMA

GNNExplainer 80.9 ± 1.2 78.5 ± 1.0 87.3 ± 1.3 77.7 ± 1.0 79.3 ± 1.1 84.3 ± 1.3
PGExplainer 91.4 ± 0.1 72.1 ± 0.1 83.8 ± 1.0 92.6 ± 2.1 85.1 ± 0.1 97.0 ± 1.1
PGMExplainer 99.3 ± 0.2 67.5 ± 0.8 86.8 ± 0.3 95.0 ± 0.2 90.6 ± 0.3 99.7 ± 0.1

DnX 98.1 ± 0.2 92.7 ± 0.2 90.8 ± 0.1 83.5 ± 0.4 79.6 ± 0.3 96.9 ± 0.2
FastDnX 100.0 ± NA 95.2 ± NA 94.7 ± NA 87.1 ± NA 87.7 ± NA 99.9 ± NA

GATED

GNNExplainer 79.7 ± 1.0 68.8 ± 1.0 91.4 ± 3.0 85.2 ± 2.0 73.2 ± 4.0 70.0 ± 2.0
PGExplainer 96.1 ± 4.1 70.9 ± 3.0 90.7 ± 1.0 91.7 ± 7.0 83.7 ± 1.5 98.7 ± 0.1
PGMExplainer 98.6 ± 0.1 69.4 ± 0.5 86.8 ± 0.3 94.1 ± 0.2 90.1 ± 0.2 98.3 ± 0.2

DnX 98.3 ± 0.1 91.1 ± 0.1 90.8 ± 0.1 85.0 ± 0.3 82.1 ± 0.2 98.0 ± 0.2
FastDnX 99.6 ± NA 93.5 ± NA 94.0 ± NA 76.8 ± NA 86.8 ± NA 98.0 ± NA

GIN
PGMExplainer 60.2 ± 0.2 84.5 ± 0.3 68.4 ± 0.2 89.3 ± 0.2 85.0 ± 0.5 55.7 ± 0.4
DnX 99.0 ± 0.1 94.0 ± 0.2 91.1 ± 0.1 84.1 ± 0.3 77.3 ± 0.2 95.3 ± 0.2
FastDnX 99.6 ± NA 94.7 ± NA 93.9 ± NA 75.2 ± NA 76.5 ± NA 99.1 ± NA

Time comparison.

To demonstrate the computational efficiency of DnX/FastDnX, Figure 1 shows the time each method takes to
explain a single GCN prediction. For a fair comparison, we also take into account the distillation step in
DnX/FastDnX.

10−3

10−1

101

103

Ti
m

e
(l

og
s)

86× 77×
6× 8×

BA-House

580×
72×

15× 25×

BA-Community

2K×
326×

56× 132×

BA-Grids

402× 495×
2×

104×

Tree-Cycles

10−3

10−1

101

103

Ti
m

e
(l

og
s)

2K×
330×

4×
153×

Tree-Grids

173× 160×
18× 40×

BA-Bottle
45K×

461× 809× 248×

Bitcoin-Alpha
62K×

405× 668× 200×

Bitcoin-OTC

PGMEx GNNEx PGEx DnX FastDnX

Figure 1. Time comparison. The bar plots show the average time each method takes to explain a prediction
from GCN.

Are benchmarks too simple?

Given that DnX/FastDnX often achieve remarkable performance by explaining simple surrogates, a natural
questions arises: are these popular benchmarks for GNN explanations too simple? Since these benchmarks rely
on model-agnostic ground-truth explanations, we now investigate inductive biases behind these explanations,
and show that they can be easily captured.

Figure 2. Degree distribution of motif and base nodes.

What you’ll also find in the manuscript

Distillation results;
Results for edge-level predictions;
Experiments evaluating the fidelity on real datasets;
Experiments on additional datasets.

