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Context & Motivation
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Techniques to analyze the urban perception

Is it safe?

Hint: Street view images contain rich, complex scenes that are difficult to interpret 
purely through pixels or vector embeddings.
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What information is obtained?

● Traditional methods identify objects – e.g., they see "a building, 
sidewalks, roads"

● But they may miss context — e.g., they see “a building” but not "a 
neglected building with graffiti and broken windows."
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How to obtain the rich information (context) from images?

● Image descriptions adds semantic depth and human-like perception.

● Vision-Language models analyze the context of the image and provide 
further information.
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● Place Pulse

● Image-to-Text descriptions

● UrbanVLM

● Ablation study

● Conclusions

Overview



Place Pulse



8FGV | EMAp 

Place Pulse dataset

https://centerforcollectivelearning.org/urbanperception

https://centerforcollectivelearning.org/urbanperception
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Cities included

- 1 223 649 Comparisons
- 111 390 images
- 32 countries
- 56 cities
- 6 categories:

- Safety
- Boring
- Depressing
- Wealthy
- Lively
- Beauty

Note: Same color means same country.
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. . .

. . .

Image
Perceptual

Scores

Strength of Schedule



11FGV | EMAp 

High safety scores images
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Low safety scores images



Image-to-Text descriptions
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Types of descriptions

○ General description: Simple description of the image

○ Subjective description: Based on the perception

○ Positive: Describe the image based on its corresponding perception. 

○ Negative: Describe the image based on its opposite perception.
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Image general descriptions
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Image general descriptions

Randomly select 50 samples and compare the description results



Urban Vision-Language Model
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Model architecture
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Model architecture - image descriptions

We use and compares LlaVA and BLIP-2 performances
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Model architecture - image-text encoders

We use and compares CLIP and SigLIP performances
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Model architecture - contrastive
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Model architecture - heads
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Classification and regression results

Classification Regression



Ablation study
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Components

We define 4 main components:

● Heads: Classification and regression MLP

● Dual-modality: Linear projections from Image and Text encoders

● Image-to-Text: Generates positive and negative descriptions

● Contrastive Learning: Image-text alignment
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Only heads (learns to classify and regress)

Use the corresponding positive description and concatenate.
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Dual-modality (learns to project image and text)

Use the corresponding positive description and concatenate.
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Image-to-text (learns to describe)

Improve the corresponding positive description and concatenate.
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Contrastive (learns to match image-text)

Find the best match image- positive and negative descriptions, and concatenate.
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UrbanVLM (learns all together)

Improve and match image-text descriptions and concatenate.



Conclusions
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Conclusions

● Ablation studies allows to analyze and understand the relevance of each 
component in our model.

● Adding robust descriptions improve the urban perception inference of images 
giving a human-based perception descriptions.

● UrbanVLM successfully learns each component and improve the classification 
and regression tasks by using image descriptions.
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